HISTORIC AMERICAN ENGINEERING RECORD

OFFUTT AIR FORCE BASE,
STRATEGIC AIR COMMAND HEADQUARTERS AND COMMAND CENTER,
HEADQUARTERS BUILDING
(Offutt Air Force Base, Strategic Air Command Headquarters and Command Center, Facility 500)
HAER NO. NE-9-M

Location: 901 SAC Boulevard, Offutt Air Force Base, Bellevue, Sarpy County, Nebraska

UTM:
15/255075/4555215
15/255195/4555195
15/255200/4554980
15/255165/4554960

USGS Quadrangle: Plattsmouth, Nebraska

Date of Construction: 1954-1989

Architect: Leo A. Daly

Present Owner: United States Air Force

Present Use: Defense Facility

Significance: Following World War II (WWII), the United States participated in a series of military and political events known as the Cold War. As part of its response, the United States government formed the Strategic Air Command (SAC) in 1946. In 1948 SAC moved to Offutt Air Force Base (OAFB), occupying a WWII complex built for the Martin Bomber Company and designed by the firm of Albert Kahn.

In 1954 SAC built a new headquarters, including a hardened underground facility. From the headquarters, the Commander directed an international military force of long-range bombers and missiles, supported by more than 200,000 personnel. The Air Force made significant additions to the original buildings in 1959, 1962, and 1970. In 1987 a new underground command post was constructed.

In 1992, as the Cold War ended, the Strategic Air Command became the Strategic Command (STRATCOM), a unified command, including the Navy, charged with the deterrence of a military attack on the United States and its allies, and the employment of armed forces to achieve national objectives.

The complex consists of several buildings, including the primary Headquarters (OAFB Facility 500), an above ground office structure. The command center (OAFB Facility 501) is an underground building built in 1956 and 1987. The traffic check house (OAFB Facility 506) is a simple brick and metal structure used for security control.
Offutt Air Force Base, Strategic Air Command Headquarters and Command Center,
Headquarters Building
HAER NO. NE-9-M
Page 2

Historian:
Daniel J. Hoisington, Historian, Hoisington Preservation Consultants

Project Information:
Following a 1994 cultural resource survey of historic properties at Offutt Air Force Base in Bellevue, Nebraska, the Strategic Air Command Headquarters was recommended as a property eligible for National Landmark status. Since the buildings continue in active use, the Nebraska State Historic Preservation Office and the Base Cultural Resource manager determined that a history of the headquarters under the standards of the Historic American Buildings Survey should be completed.

Principal investigator Daniel J. Hoisington conducted inventory and research at Offutt on 5-12 April 2000. Andrew Baugnet completed the photography as a subcontractor to Hoisington Preservation Consultants. Tom Grooman, facility administrator, provided Hoisington and Baugnet with a tour of the facility.

National Park Service historian Greg Kendrick of the Intermountain Regional Office, Denver, administered the contract to complete the report. At Offutt Air Force Base, Mr. Gene Svensen, Base Cultural Resource Manager, managed the project.
TABLE OF CONTENTS

Introduction ... 5
The Cold War: The Early Years .. 5
 The Challenge .. 5
 The American Response.. 7
 Formation of the Strategic Air Command .. 8
 Curtis LeMay ... 10
SAC Comes to Nebraska .. 11
 Selection of Offutt AFB for HQ... 11
 Offutt AFB in 1948... 12
American Defense Strategy in the 1950s .. 13
 The Soviet Threat ... 13
 The New Look ... 14
 SAC Responds to the “New Look”.. 14
A New Headquarters .. 15
 Planning and Politics .. 15
 An Underground Command Center ... 16
 Design and Construction .. 17
 The Architect: Leo Daly ... 17
SAC Headquarters and Command Center .. 19
 Facility #500 SAC Headquarters (HAER NE-9-M) .. 19
 Table 1: Facility #500 Construction .. 20
 Facility #501 SAC Command Center Facility (HAER NE-9-N) ... 21
 Table 2: Facility #501 Construction .. 22
 Facility #506 Traffic Check House (HAER NE-9-0) .. 22
The Power Years ... 22
 SAC Enters the Missile Age.. 22
 The Killian and Gaither Reports ... 23
 SAC Adopts Alert Status .. 24
 SAC HQ and the New Defense Policies ... 25
 The Cuban Missile Crisis .. 26
The Headquarters Evolves .. 28
 Joint Strategic Target Planning Staff .. 29
 The Arms Race and Detente .. 31
Introduction

The War Room of the Strategic Air Command at Omaha was not immense. Not in terms of what it had to do. It was no bigger than a small theater. The pools of darkness in its corners, however, gave the sensation of immensity, almost of a limitless reach. The only illumination in the War Room came from the Big Board. It covered the entire front wall and resembled a gigantic movie screen, except that it was made of a kind of translucent plastic. At that moment the Big Board showed a simple Mercator map of the world. The continents and the oceans were familiar, as were the lines of latitude and longitude. But there the similarity to ordinary Mercator maps disappeared. The map was covered with a strange flood of cabalistic signs. Arrows, circles, squares, numbers, triangles were strewn across the screen, sometimes came up bright and clear, sometimes dimmed, and occasionally a sign notation would fade entirely and leave only a phosphorescent glow that persisted for a few seconds.

Eugene Burdick and Harvey Wheeler, *Fail-Safe*¹

In this best-selling novel, later turned into movie and television productions, the built environment becomes a character within the story. As Burdick suggested, it was not an ordinary building. From its interiors, sophisticated communications equipment tracked movements around the world. From its control panels, military leaders could launch weapons that might forever alter the course of human history.

The Cold War: The Early Years

The Challenge

At the end of World War II, new challenges confronted the United States. With the victory, the nation became one of two "superpowers" in international affairs. As a military power, the United States stood preeminent, controlling the world's only atomic arsenal. As a peacetime leader, American initiatives helped to organize the United Nations and assisted Europe and Japan as they rebuilt their shattered economies. As an economic force, the United States ended the war as the greatest industrial power in history.²

The Soviet Union ended the war with the largest army in the world and control of Eastern Europe. The war, however, devastated the country, leaving factories and farms in shambles. Estimates are that nearly twenty-seven million Soviet citizens lost their lives in the fight against Hitler. In response, Soviet leadership pursued a policy to weaken Germany and establish a buffer zone

around the borders in Europe. The Soviet government established compliant communist
governments in a number of eastern European countries. They also staunchly refused to sign a
formal peace treaty to end World War II, fearing a reunified Germany.³

These policies set the stage for a series of confrontations with the United States, creating, in the
words of Winston Churchill, an "Iron Curtain." The situation was especially tense in Europe,
where the military power of the Soviet Union matched that of the United States and its allies. Pro-
Soviet governments took power in Hungary, Poland, Romania, and Bulgaria in the year after the
war. The United States refused to intervene militarily. It drew a line, however, when communist
guerillas threatened to topple the pro-Western governments of Turkey and Greece. President
Harry S Truman enunciated the Truman Doctrine in March 1947, pledging U.S. aid to any free
nation threatened by communism. The "Truman Doctrine," backed by $400 million in military
assistance, entrenched the sharp delineation of respective spheres of influence.⁴

Tensions escalated in 1948, after the United States, France, and Great Britain unified the areas
they had occupied in Germany since the war's end. American policy sought a revived German
economy, contrary to the Soviet strategy. In response, the USSR blocked ground transport to the
divided, land-locked city of Berlin, hoping to remove western influence from eastern Germany
and, at the same time, destabilize Europe. The Allies countered with an eleven-month airlift of
food and supplies to Berlin—directed by Air Force General Curtis LeMay—that forced the USSR
to remove the blockade.⁵

Unable to match the conventional military might of the Red Army on the ground, the United
States chose to protect the beleaguered nations of Europe by extending its nuclear umbrella
overseas through strategic alliances such as NATO. Then, in 1949, the Soviet Union detonated its
first atomic bomb, drastically altering the post-war balance of power.⁶

The stage was set for a forty-year confrontation known as the Cold War, a phrase coined by
American statesman Bernard Baruch in 1946 and popularized by Walter Lippmann's 1947 book
entitled The Cold War. The term originated because most actions of the opposing groups fell just

³ John L. Gaddis, The United States and the Origins of the Cold War, 1941-1947 (New York: Columbia
University Press, 1972); Hugh Thomas, Armed Truce: The Beginnings of the Cold War, 1945-46 (New York:

⁴ Patrick Glynn, Pandora's Box: Arms Races, Arms Control and the History of the Cold (New York: Basic

⁵ Alan Milward, The Reconstruction of Western Europe, 1945-51 (Berkeley: University of California Press,

⁶ John C. Lomquest and David F. Winkler, To Defend and Deter: The Legacy of the United States Cold War
Missile Program (USACERL Special Report 97/01, November 1966).
short of a “hot” or shooting war. The struggle between the two superpowers dominated international affairs, with the world seemingly divided into two armed camps: the United States and its allies against the Soviet Union and the communist bloc.\(^7\)

The Cold War was engaged on many different levels—in regional conflicts such as Berlin and Vietnam, in intelligence gathering operations, even sports. No aspect was more visible, more consistent, or had a greater impact on the United States than the arms race. Between 1945 and 1989, the United States committed massive scientific and economic resources to the development of the military. The arms race was a battle for technological supremacy—a battle that was waged in laboratories and factories across the country, encompassing the entire spectrum of military technology from conventional arms to nuclear weaponry. As the arms race unfolded, a new class of weapons—guided missiles armed with nuclear warheads—emerged as the defining weapons technology of the Cold War.

Americans lived through the Cold War on the home front as well. Political races turned on the country’s response to the fall of China to communism, the resolution of the Korean War, and a “Missile Gap.” Joseph McCarthy built his career around a search for shadowy communist sympathizers—reinforced by the well-publicized trials of Alger Hiss and the Rosenbergs. At home, a major national defense campaign led to the construction of fallout shelters. At school, children crouched under their desks practicing “duck and cover” air raid drills. In many towns, a nearby U.S. Army Nike installation pointed its missiles into the air, reassuring the citizens that Pearl Harbor would not reoccur in the Cold War.\(^8\)

The American Response

America took the lessons of World War II into the Cold War. Public officials raised the specter of another Pearl Harbor, reinforcing the need for an alert defense. Although the United States had not exchanged gunshots with the Soviet Union, the President, Congress, and influential leaders evoked the term, “appeasement”—referring to Neville Chamberlain’s Munich treaty with Hitler—to support a policy that halted potential aggression in its earliest stages.

The atomic bomb, however, radically altered the nature of war. In an influential pamphlet, Bernard Brodie, a Yale theorist, addressed many of the issues raised by the bomb. Brodie argued

that there were three fundamental changes: future wars using atomic bombs would be cheaper, shorter, and less defensible. First, the atomic bomb would deliver more “bang for the buck,” reducing the need for massive ground forces. Second, since no defense could stop an atomic attack, it gave the upper hand to the country prepared to strike first. To counter this advantage, defense forces would need to centralize its command structure — allowing rapid response — while decentralizing its forces to prevent immediate destruction of a response capability. Finally, Brodie argued that the destructive power of the bomb would prove a deterrent to war.9

The 1947 Air Force paper, “Strategic Implications of the Atomic Bomb in Warfare,” incorporated Brodie’s core theories. The following year, President Truman’s Air Policy Commission, headed by Thomas K. Finletter, formally approved these concepts. The Commission endorsed the deterrent concept and placed the central responsibility for America’s defense in the hands of the Air Force.10

Formation of the Strategic Air Command

While still a branch of the Army, the Air Force undertook this increased responsibility under a new organizational structure. On 21 March 1946 the U.S. Army Air Forces (USAAF) reorganized into three combat commands: the Air Defense Command (ADC), the Tactical Air Command (TAC), and the Strategic Air Command (SAC). General Carl Spaatz, Commanding General of the Army Air Forces, issued an order defining the Strategic Air Command’s mission:

The Strategic Air Command will be prepared to conduct long range offensive operations in any part of the world, either independently or in cooperation with land and Naval forces; to conduct maximum range reconnaissance over land or Naval forces; to provide combat units capable of intense and sustained combat operations employing the latest and most advanced weapons; to train units and personnel for the maintenance of Strategic Forces in all parts of the world; to perform such special missions as Commanding General, Army Air Forces may direct.11

10 Survival in the Air Age: A Report by the President’s Air Policy Commission (Washington, D.C.: GPO, 13 January 1948);

11 Strategic Air Command General Orders No. 1, 22 March 1946.
In short, the TAC supported the movements of the Army and Navy in the field. The ADC set up defenses to the continental United States. SAC's mission was to take the war to the enemy.12

With the transfer of command, SAC took over the headquarters of the now-defunct Continental Air Command, located at Bolling Field, District of Columbia, although it soon moved to Andrews Air Force Base, Maryland. The Army Air Corps placed SAC under the command of General George C. Kenney. Kenney, a World War I veteran, served as commanding general of the Allied Air Forces in the Pacific in the closing years of World War II.

SAC started with two Air Forces (the Eighth Air Force at Fort Worth, Texas and Fifteenth Air Force at Colorado Springs, Colorado), eighteen bases, and nine bomber groups under its control. Its assigned resources include 37,092 personnel (4,319 officer, 27,871 enlisted men, and 4,902 civilians). However, SAC had almost no weaponry other than 148 B-29 Superfortresses, considered the best strategic bombers in the world. The 509th Composite Group (which had been activated in 1944 for the first atomic bomb mission against Japan) was the only unit capable of conducting offensive operations with nuclear weapons. In 1946 SAC undertook its first operation with atomic weapons when, under Operation Crossroads, it tested the nuclear effects of A-bombs on naval targets off the Bikini Islands in the South Pacific.13

Although General Kenney had a stellar reputation, his term suffered from low morale due to severe post-war defense reductions. Concerned with a lack of readiness, Air Force Chief of Staff Hoyt Vandenberg requested Charles Lindbergh to investigate the situation. In a devastating report, Lindbergh criticized the management of SAC. Kenney was already under fire for his opposition to the move of SAC Headquarters to Nebraska, arguing that the shift would take his military expertise far from the Pentagon. To the Defense Department, it seemed an appropriate time to change the high command.14

12 Information Office, Offutt Air Force Base, Nebraska, A Chronology of Fort Crook, Offutt Reid and Offutt Air Force Base, Nebraska From 1888 (to 1959), 18-19; "Commanders of the Strategic Air Command," 20 March 1986; and "SAC's Birth Barely Noticed," 20 March 1986 Omaha World-Herald.

14 Alwyn T. Lloyd, A Cold War Legacy: A Tribute to the Strategic Air Command (Missoula, MT: Pictorial Histories Publishing Co., 1999), 111-112; Charles A. Lindbergh to Gen. Hoyt S. Vandenberg, 14 September 1948, LeMay Papers, Library of Congress, Box B-61; Curtis E. LeMay, “Notes for Discussion with General Vandenberg, 4 November 1948, LeMay Papers, LOC, Box B-103, folder “Diary.”
Curtis LeMay

Lieutenant General Curtis E. LeMay became the Commanding General of Strategic Air Command on 19 October 1948. At the time of his appointment, LeMay was widely recognized as one of the country’s most important Air Force officers. National media widely praised his leadership in articles in the *New York Times*, *Colliers*, and *The New Yorker*, as well as the cover of *Time Magazine* in the week of 13 August 1945—the same week as the atomic bomb attacks on Hiroshima and Nagasaki.¹⁵

LeMay joined the military in 1928, gaining experience with fighter planes, and then switched to bombers in 1937. When war erupted, he quickly moved up the ranks in the European Theater. In the spring of 1945, LeMay developed and directed the Allied bombing campaign against Japan. His carefully planned strategy used low-level air strikes with incendiary bombs against the major Japanese cities, devastating that country’s industrial capacity. LeMay’s air campaign destroyed sixty-three Japanese cities and the loss of nearly a million lives.

This experience left him convinced of the growing importance of strategic bombing. In a speech given to the Ohio Society of New York in late 1945, the General warned that the next war would be fought with “rockets, radar, jet propulsion, television-guided missiles, speeds faster than sound, and atomic power.” He argued that “the air force must be allowed to develop unhindered and unchained. There must be no ceiling, no boundaries, no limitations to our air power development. It is not immediately conceivable that any nation will dare to attack us if we are prepared.”¹⁶

In his eight years at SAC, LeMay implemented those principles, building the organization into a powerful and highly respected force. He remains one of the most controversial figures in Cold War history. Still, there is little question that his leadership transformed the shape of the United States Armed Forces. "Before LeMay left [SAC]...in 1957," the *Omaha World Herald* observed, "SAC was an elite, semiautonomous organization, its relationship to the Air Force nearly that of the Marine Corps to the Navy." Following his career at SAC, LeMay served as Air Force Vice Chief, then, in 1961, as Chief of Staff of the Air Force, where he remained until retiring in 1965. He ran for Vice-President of the United States on a ticket with George Wallace in 1968.¹⁷

SAC Comes to Nebraska

Selection of Offutt AFB for HQ

The Department of Defense gave primary significance to the Air Force in its post-war defense plans. The Air Force, in turn, considered the Strategic Air Command as its top priority. Anticipating a major expansion of its responsibilities, the Air Force determined to find a new home for SAC Headquarters. Planners eliminated the nation’s capital, due to increasingly heavy air traffic in the Washington, D.C. In addition, the advent of new long-range bombers made a location in the interior of the country both possible and advisable. In 1948 SAC relocated to Offutt Air Force Base, near Omaha, Nebraska. There was considerable political maneuvering in Congress to secure SAC Headquarters. Other candidates with Omaha had been Miamisburg, Ohio; Indianapolis, Indiana; Scott Field (in Illinois); and Shreveport, Louisiana.

Nebraska Senator Kenneth Wherry led the drive to bring SAC to Omaha. Stuart Symington, then Secretary of the Air Force, jokingly complained that Senator Wherry had been in his office for the last six months before the final decision. Carroll Zimmermann, who worked for SAC, recalled, “Prior to this, SAC HQ had been scheduled to move to Colorado Springs. I had my orders in hand. Being on the ball, I had gone there and purchased a home. The day before the van was to pick up my furniture, the move was canceled.” The two military men directly responsible for Offutt Air Force Base were completely surprised at the announcement. Major General Paul L. Williams, Commanding General of the Second Air Force, told newsmen that Omaha had been ideal for air defense activities—his direct mission—and that he “regretted having to move.” Colonel Lotha Smith, Base Commander, expressed confusion about future changes in the base units.

Curtis LeMay — who was not involved in the site selection — was characteristically blunt. “My first reaction was, this is a helluva place to be going,” he told historian John T. Bolen in 1971. “There wasn’t anything out there except an Indian-fighting post. I wondered how it came about, but the orders were out and there wasn’t any use in fiddling around, finding out what went on. But I think it was to a large extent political, although it turned out it wasn’t so bad.”

Resource Agency, Maxwell AFB, Alabama. One of the controversial aspects of LeMay’s career—his advocacy of bombing Cuba in October 1962—was recently portrayed in the movie, Thirteen Days.

Offutt AFB in 1948

On 9 November 1948 SAC Headquarters officially transferred to Offutt Air Force Base, moving its operations into a complex built seven years earlier by the Glenn L. Martin Company. The Martin Company used the buildings for the manufacture of B-29 bombers during WWII, abandoning them shortly after the surrender of Japan.

Following the recommendation of the Chief of the Army Air Corps, General H. H. "Hap" Arnold, the War Department authorized the construction of two mammoth aircraft plants in late 1940. Subsequently, the Glenn L. Martin Company signed an agreement for the construction of an aircraft assembly complex at Offutt Field. The Albert Kahn architectural firm designed the buildings, modeled after a Martin bomber plant in Maryland.

Kahn was America’s foremost industrial architect. After he founded Albert Kahn Associates in 1895, he designed Detroit’s first large auto plants for the Packard Motor Car Company. It was for Packard’s tenth building that Kahn gained recognition with his design of the first concrete-reinforced auto factory. This accomplishment with Packard brought him to the attention of Henry Ford. Kahn designed Ford Motor Company’s famous Highland Park plant, where Ford consolidated production of the Model T and perfected assembly line mass production.20

In his 1917 design of the landmark half-mile-long, glass-walled Ford Rouge plant, Kahn created an efficient plant where automated assembly lines flowed uninterrupted, all on one level, from raw materials to the finished car. The Rouge grew into the largest manufacturing complex in the U.S., with a force that peaked at 120,000 workers. By 1938 Kahn’s firm was responsible for twenty percent of all architect-designed factories in the U.S.

The impact of Kahn’s work reached far outside the U.S. During the Great Depression, Kahn’s firm assisted the Soviet government in its massive industrialization effort. Between 1930 and 1932 the firm’s office in Moscow helped train more than 1,000 engineers and built 521 factories.

After designing the majority of the army airfield and many naval bases for the United States government during World War I, Kahn’s swelled 600-person office was in the forefront in response to the demands of World War II. The final three years of his life alone entailed more than $200 million in defense contracts. He designed and supervised construction of the six-million-square-foot Dodge Chicago Plant, which the Dodge division of Chrysler leased to the government for the production of B-25 bomber aircraft engines. The last major factory with

which Kahn was involved was the Willow Run Bomber Plant in Ypsilanti, west of Detroit, where Ford Motor Company mass produced B-24 Liberator bombers.

The Martin Bomber Company manufactured B-29 bombers throughout the war. The Enola Gay—the plane that delivered the Hiroshima bomb—was a product of the plant. With the end of World War II, production halted, with the last B-29 leaving the assembly line in September 1945. Within a month, only a skeleton force remained in the vast complex. The buildings sat vacant until June 1946, when the Second Air Force assumed control and moved into Buildings A, B, and C. The Army Air Corps placed the main assembly plant in “Industrial Reserve” under the jurisdiction of the Air Materiel Command.

SAC established its headquarters in Building A (see Photo NE-9-P-10). As SAC’s responsibilities and operations increased, its offices expanded from Building A into Buildings B and C (see Photo NE-9-P-10) as well as portions of the bomber plant. These buildings housed the Strategic Air Command until 1957.

American Defense Strategy in the 1950s

The Soviet Threat

The international balance of power shifted dramatically on 29 August 1949 when the Soviet Union detonated an atomic bomb. After a steady diet of news proclaiming the scientific superiority of the United States, the Soviet atomic bomb shocked the country. For the first time, American defense strategists faced the prospect of immediate annihilation—a vast change from the nation’s comfortable isolationism of the 1930s—in fact, a military challenge unparalleled in history. This shift prompted a reevaluation of U.S. objectives and strategic plans. This reevaluation, documented in National Security Council (NSC) 68, recommended boosting military expenditures. The policy paper, dated 7 April 1950, warned that the Soviets would have a fission bomb stockpile of 200 by 1954. NSC 68 “estimated that the Russians could deliver between 75 and 125 atomic bombs on targets in the United States, unless defenses are greatly

increased.” In addition, president Truman authorized the development of a new, more powerful nuclear bomb.

The New Look

The 1950s saw a flurry of writing and debate about nuclear weapons and national strategy, leading to a two-pronged defense strategy.

The first strategic goal was that the United States should develop the means to survive an attack from the Soviet Union. Second-strike deterrence theory reduced the problem of nuclear strategy to the technical problem of maintaining an invulnerable retaliation of sufficient size to inflict unacceptable damage on an enemy even after absorbing its first strike.

Although deterrence was relatively simple in concept, the exact composition of the American arsenal was subject to considerable debate. The Eisenhower administration, anxious to trim defense expenditures by reducing conventional forces, formulated a new defense policy called the “New Look” based on the concept of massive retaliation. In essence, this doctrine stated that the United States would respond to communist aggression anywhere in the free world with atomic strikes on the Soviet Union and China. In January 1954 Secretary of State John Foster Dulles publicly announced deterrence based on massive retaliation with nuclear weapons as our official military policy.

SAC Responds to the “New Look”

From 1948 to 1956, SAC strength and command responsibilities grew at a phenomenal pace under General LeMay. Within weeks he replaced SAC’s deputy commander, chief of staff, director of operations, and director of plans. The new men were all veterans of the Pacific strategic bombing campaign—Brigadier Generals Thomas S. Power, August W. Kissner, John B. Montgomery, and Walter S. Sweeney. The new leadership—driven by LeMay—revitalized SAC, as they instituted tough new procedures for operations, training, security, maintenance, and

22 Lonnquest and Winkler, 55; “Summary of a report on April 7, 1950 concerning a reexamination of United States Objectives and Strategic Plans” (NSC 68), Dwight Eisenhower Papers, DDE Library, Abilene, KS. Cited in Lonnquest and Winkler, 55.

25 Walter LaFeber, America, Russia, and the Cold War, 1945-1975, 144 and 170.
support. SAC’s military might increased from 71,490 personnel and 868 aircraft in January 1950 to 170,892 people and 1,830 aircraft by December 1953.

President Eisenhower’s embrace of the “massive retaliation” leaned heavily on SAC’s manned bombers to deter Soviet expansion. This matched General LeMay’s military philosophy that the United States could maintain peace with the Russians with nuclear bombs carried by SAC long-range bombers, and LeMay’s “notion that communism could best be handled from a height of 50,000 feet.” Thereafter, SAC became widely known as the United States’ nuclear deterrent force.

By 1955 SAC Headquarters commanded 196,000 people, thirty-eight U.S. and thirteen overseas bases, and 3,000 aircraft, which included the first delivery of Boeing B-52 Stratofortresses, a high altitude swept-wing intercontinental nuclear bomber. The increased personnel, bases, and aircraft made SAC over three times the size it had been in 1948 at the start of the Cold War. The increased size and responsibilities of SAC alone warranted a new headquarters and command center.

A New Headquarters

Planning and Politics

A new SAC Headquarters building had been in the works shortly after SAC moved to Offutt AFB in 1948. LeMay and his staff carried on a vigorous campaign. He recalled,

“We simply had to have a Headquarters and Command Center whereby we could be in instantaneous control of SAC bases scattered all over the United States and elsewhere in the world. It took us exactly five years to get that Headquarters and Command Center.

Initially, the project failed to receive approval from Congress. General Francis Griswold recalled,

27 In 1951, General LeMay was promoted to a four star general. J.C. Hopkins, The Development of Strategic Air Command, 1946-1981: A Chronological History, 28;"Berlin Airlift Hero LeMay Helped Lift SAC to Elite Status," Omaha-World Herald, 20 March 1986; and Walter LaFeber, America, Russia, and the Cold War, 1945-1975, 144, 170.
Curt and I got together and one of us said, “Let’s not call it a headquarters. Let’s call it a control center. No congressman’s got enough guts to say SAC can’t have a control center. And sure enough, the next year we got it into the budget.

Originally, construction of a new headquarters building was slated to begin in 1953, but those plans were set aside because of a freeze on new military construction imposed by the Bureau of the Budget that year. The logjam broke in the fall of 1953 when the Soviet Union successfully tested its new “superbomb”—the hydrogen bomb—only nine months after the United States. In March 1954 the United States tested a lithium-based H-bomb that fit into the bomb bay of a B-47. These weapons were fifteen to twenty times more powerful than the Hiroshima bomb. The events dramatized the growing threat of nuclear war due to the sheer power of the new weapons and the increased ability of both sides to deliver a bomb.

An Underground Command Center

A key issue was whether to build an underground hardened site for the Command Center. LeMay recalled:

Headquarters and Command Center? Had to be underground. Just had to. We agreed on that; my staff were with me in this opinion. So we went in for this program. And back came the answer from Washington. “It’s far too expensive for you to go underground... Very wearily we had designed a building and all that we needed, above ground. This was during the Truman Administration. We got the design, got the plans. Every item was approved. We collected our money and advertised for bids.

Suddenly it’s January 1953, and we don’t have the Democratic Administration any longer. We have the Republican Administration. The Republicans say, “Stop everything! We’re going to review all this stuff.” They reviewed our HQ building program. And said, “How stupid can you get in this day and age, building a headquarters above ground? Don’t you know that you ought to be below ground?” They were telling that to us, now.”

Following the directive of Roger M. Keyes, Deputy Director of Defense, LeMay ordered a review of the plans, assigning a panel of officers to develop alternate solutions. LeMay noted, “By this time, the hydrogen bomb is with us — not only the atomic bomb. And going underground gets to be rather academic.”

29 LeMay, Mission with LeMay: My Story, 442.

30 LeMay, Mission with LeMay: My Story, 442.
The panel determined that no viable alternatives adequately met the requirements for invulnerability within the proposed budgetary constraints. Alternatives included:

- Alternative sites, including the use of nearby schools, hotels, or Federal buildings.
- Dispersed sites, such as the use of trailers. The “race track” scheme included four buildings located around a circumference of a circle with connecting transportation.
- Invulnerable sites, such as mines, caverns, or tunnels. Since these were not viable at Offutt AFB, the headquarters would have to be moved.

After rejecting these alternatives, LeMay and his staff chose a compromise solution. SAC would construct its planned headquarters above ground, but build an underground command center. The underground structure was not a “hardened” site, as it remained vulnerable to a direct hit.31

Design and Construction

The Department of Defense approved construction of a new SAC Headquarters (Facilities #500) and Command Center (#501) in 1954. The architectural firm of Leo A. Daly and Company Architects, Omaha, Nebraska, designed the complex. The Robert E. McKee General Construction Company, Inc. of Santa Fe, New Mexico, served as contractors. Major C. U. Ellis acted as project officer. Construction began in April 1955 and ended in late 1956 at a cost of $8,662,464.40. SAC headquarters moved into its new building and command center in January 1957.32

The Architect: Leo Daly

The Leo A. Daly Company began in 1915, when Leo A. Daly, Sr. opened his firm in Omaha, Nebraska. Leo Anthony Daly, Sr. initially established his practice by designing churches for Nebraska's Catholic communities in the 1920s, 1930s, and 1940s, such as St. Margaret Mary's church in Omaha, Nebraska (1945).33

However, in the 1947, Daly achieved world renown by designing many of the buildings on the campus for Boys Town, Nebraska, a shelter for homeless children started west of Omaha by

31 Memo, “Problem: To select the location and type of construction for the new SAC Control Center,” undated, in files of Office of the Historian, Strategic Air Command, Offutt Air Force Base.

Father Flanagan in 1921. Daly designed most of the Boys' Town campus, including the auditorium, field houses, trade school, stadium, dining hall, high school and administration building. Although the Boys Town campus has grown considerably, Daly's contributions are still evident in the campus.34

The Leo A. Daly Company grew dramatically in the 1950s, after his son, Leo A. Daly, Jr., took over the firm. Born 29 July 1917, Leo A. Daly, Jr. received his Bachelor of Arts in Architecture degree from Catholic University and joined the firm in 1939. Daly, Jr. expanded the firm nationally by undertaking defense-related projects for the armed forces. In 1954 Leo A. Daly Company served as the architect for the original Strategic Air Command Headquarters (Facility #500) building, SAC Command Center (Facility #501), and SAC Traffic House (Facility #506).

The relationship between SAC and the Daly firm proved useful to both parties. For example, Daly later won the contract to design the basic plans for the reinforced concrete alert quarters used at some sixty-five SAC bases. At Offutt Air Force Base, Daly designed the Strategic Air Command Memorial Chapel (Facility #463) in 1955. In 1963 the Leo A. Daly Company received an Air Force Exceptional Service Medal from SAC Commander in Chief Curtis LeMay for his design on the SAC Headquarters extension and addition. In turn, Daly was a key member of the local businessmen's council that frequently supported special projects at Offutt.35

In the 1960s primary works completed by Leo A. Daly's firm in the Midwest include the United Life Insurance Company Building (Fort Wayne, Indiana, 1965), Bergan-Mercy Hospital (Omaha, Nebraska, 1968), and Woodmen of the World Life Insurance Society Building (Omaha, Nebraska), 1969). Other important buildings completed by Daly's firm in the 1960s, include the California Chamber of Commerce Building and McKeon Office Complex (Sacramento, California, 1967) and the Habib Bank, (Karachi, Pakistan 1969). Leo A. Daly Jr. also designed some four thousand schools, medical centers, and clinics for Brazil.36

In the 1970s Leo A. Daly Company continued to expand its primary work in the United States and abroad. In 1972, they designed the Washington, D.C. Children's hospital, a light and airy glass building with large play areas, especially designed to be flexible enough to be able to grow

and accommodate expansion for the future. In 1975 Leo A. Daly Company orchestrated the restoration efforts on the turn of the century Orpheum Theater, Omaha’s performing arts center. In 1981 Leo A. Daly III succeeded to the presidency of the company and expanded the family firm further by opening branch offices in Tokyo, Taipei, Hong Kong to serve Japanese, Chinese, and Southeast Asia clients, Riyadh to work with the Saudi Arabian government, and in Madrid, and Berlin to better serve its European Economic Community (EEC) clients. The firm became one of the largest architectural firms in the world. Recent projects include an office complex for the Lockheed Missile and Space Company.

SAC Headquarters and Command Center

Facility #500 SAC Headquarters (HAER NE-9-M)

The SAC Headquarters and Command Center complex consists of two separate but interconnected buildings, Facility #500 and Facility #501.

The main building is situated on a slight rise with an expanse of lawn, of approximately one hundred yards, separating Facility #500 from the road. This creates a dramatic approach, especially when combined with the brick circular platform that displays an Air Force Minuteman Missile and a Navy Trident 2 Missile. It also provides open space for visual monitoring for security. At the time of construction, SAC Headquarters was bordered on the north side by a large parking lot and Looking Glass Avenue; on the east by Mercury Avenue and a large parking lot beyond it, and on the south by Apollo Drive and a large parking lot beyond it. SAC Boulevard borders the building on the west.

Leo Daly designed SAC Headquarters firmly within the style of the International School, with a strong horizontal line and flat roof. The Headquarters is a three-story building with a basement level. The main portion of the above-ground building measured 597 feet x 69 feet. The primary entrance extended 88 feet from the center of the main façade. Three wings (A, B, and F)—each 68 feet wide—extended 176 feet to the southeast. [See Photo NE-9-M-68. This historic photograph shows the building in its initial configuration. Note the two small buildings that housed air intake units for the underground command post.]

The single most important visual elements are the bands of fixed anodized metal windows, emphasizing the building’s strong horizontal line. A continuous concrete sill runs below these

bands of windows. The building has a concrete foundation and a concrete flat roof covered with five-ply pitch and gravel. The exterior of the building is finished with a cream brick and poured concrete.

The general floor plan consisted of a central hall in each wing with offices on either side. At the main entrance, the visitor enters a reception/security area decorated with the SAC insignia set in the floor. [See photographs HAER NE-9-M-35, 36, 37] Lighted wall panels show photographs of significant donors to SAC special projects. [See photograph HAER NE-9-M-37] Many rooms remained open spaces, broken by moveable partitions. Ceiling finishes are generally foam and aluminum drop ceilings with panel lights. A large cafeteria dominates the middle wing on the first floor. [See photograph HAER NE-9-M-38] In recent years, the primary entrance shifted to the north side where security is closely guarded. [See photographs HAER NE-9-M-39, 40] This new entrance leads into a theatre/exhibit area, tracing the history of the Strategic Air Command and STRATCOM. [See photographs HAER NE-9-M-41, 42] Third floor offices, located above the main entrance, provide both work and ceremonial spaces for senior STRATCOM officers. [See photographs HAER NE-9-M-43-50] The building accommodates several specialized work spaces in the basement. These include an incinerator room where documents are destroyed and a security center for monitoring all movement in the building. [See photographs HAER NE-9-M-53,54]

Table 1: Facility #500 Construction

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original building</td>
<td>Main three story headquarters building with three wings and basement. Includes internal wing designations of A, B, C, D, E, and F.</td>
<td>1956-57</td>
</tr>
<tr>
<td>Addition</td>
<td>G Wing. Three story addition with basement.</td>
<td>1959-1960</td>
</tr>
<tr>
<td>Extension</td>
<td>Extension of wings C, D, and E of main building.</td>
<td>1962-1964</td>
</tr>
<tr>
<td>Addition</td>
<td>H Wing. Three story addition with basement. Connects C, D, and E wings together.</td>
<td>1962-1964</td>
</tr>
<tr>
<td>Addition</td>
<td>J Wing, Phase I. Underground hardened basement.</td>
<td>1972</td>
</tr>
<tr>
<td>Addition</td>
<td>J Wing Phase II. Three story addition built over J Wing Phase I.</td>
<td>1982</td>
</tr>
<tr>
<td>Addition</td>
<td>One story 250-seat theater.</td>
<td>1992</td>
</tr>
</tbody>
</table>
Facility #501 SAC Command Center Facility (HAER NE-9-N)

The subterranean building in the SAC Headquarters and Command Center nomination is Facility #501, situated below a grassy knoll just northwest of Facility #500. Over time, Facility #501 housed SAC command post, a communications center, SAC Automated Control System data automation equipment, and portions of the Joint Strategic Target Planning Staff (JSTPS), as well as intelligence, logistics, and operations activities.39

The three-floor underground command post connected with SAC Headquarters (Facility #500) via a passageway to B-Wing. To enter, the visitor descends a concrete ramp, approaching a set of steel doors, 7 feet high and 7 feet wide overall, set on steel rollers. [See Drawing # 10] The passageway continued down a 78-foot ramp. The visitor could also gain access through Ramp E on the north side. This ramp, which also featured heavy steel doors, held a decontamination area, intended for staff who entered after an attack began.

The three-floor underground command post measured 145 feet x 264 feet. This hardened rectangular structure has 24-inch thick exterior walls, two 10-inch thick reinforced concrete intermediate floors, and a reinforced concrete roof that varies in thickness from 24 to 42 inches. [See Drawings #7 and #8] There were two air intake shafts leading to above ground structures.

The dominant feature of the interior is the command post. As built in 1957 the post had a balcony overlooking six display screens, each 16 x 16 feet in size. As built, six giant panels of maps and boards depicted the exact disposition and operational status of the entire SAC force, including weather conditions, force movement information, and data about aircraft and missiles.40 [See Photo NE-9-N-9, 10]

At the first sign of nuclear attack, steel covered over every airshaft into the command post slammed shut to provide an air-tight seal from the outside environment. Thereafter, with an emergency power system, stored rations, water from artesian wells, and an internal air supply

40 Polmar, Strategic Air Command. People, Aircraft, and Missiles, 49; Also see two motion pictures, “Interior Missile Control Center, Offutt Air Force Base,” and “President Johnson and NATO Secretary General Brosio Visit SAC HQ, Offutt AFB, Nebraska,” National Archives, Motion Picture, Sound, and Video Branch.
system, the military occupants of Facility #501 could survive for up to 30 days without surfacing. A generator room, approximately 80 feet by 62 feet, was reach via Ramp B.

Table 2: Facility #501 Construction

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Building</td>
<td>Main three story subterranean building hardened against a direct nuclear attack.</td>
<td>1957</td>
</tr>
<tr>
<td>Addition</td>
<td>Updated Command Center built adjacent to 1957 building.</td>
<td>1989</td>
</tr>
</tbody>
</table>

Facility #506 Traffic Check House (HAER NE-9-0)

Facility #506 is a one story, brick traffic check house, located between two of the central wings (D and E) of the original SAC Headquarters (Facility #500). When built in 1957, Mercury Avenue ran along the eastern perimeter of the original Facility #500. With the construction of H-Wing in 1962, the check house was enclosed within a courtyard.

Facility #506 has a concrete foundation, cream-colored brick walls, and a flat roof covered with tar and gravel. A single metal panel door with one pane on the north side provides access into the check house. The building also displays concrete sills, sliding windows, and a metal vent on the corner of the building. [See photograph HAER NE-9-O-1]

The Power Years

SAC Enters the Missile Age

On 1 July 1957 Commander in Chief General LeMay transferred to Washington, D.C. to take the post of Air Force Vice Chief of Staff. General Thomas S. Power assumed command of SAC, serving as Commander in Chief from 1957 to 1964. The aggressive leadership of General Power, combined with LeMay’s influence in the nation’s capital, brought SAC to the height of its power within the U.S. defense system.

On the international level, technological advances fueled a new phase of dramatic growth for the Strategic Air Command and Offutt Air Force Base. In May 1957 the Soviet Union conducted its first successful ICBM test, followed in October 1957 by the launch of Sputnik, the first satellite to

orbit the earth. Their success in ICBMs and spacecraft demonstrated that the Soviets had the capability to send powerful weapons of destruction to targets thousands of miles away.

The United States made its first test of an Atlas ICBM in December 1957, followed by the launch of the first successful U.S. satellite—Explorer I—in January 1958. To direct the “space race,” the federal government formally established the National Aerospace Space Administration (NASA) in 1958. Still, there was a consensus that the U.S. had fallen behind in missile technology, reinforced when Russian Yuri Gagarin orbited the earth in 1960. In addition, some intelligence reports showed that the Soviet Union deployed many more ICBMs than the United States. The *Washington Post* declared that the United States was “in the gravest danger in its history.”

The Killian and Gaither Reports

These cataclysmic events stirred many influential critics to attack the concept of massive retaliation. In its place, these critics formulated a new strategy, based on “survivability,” which they enunciated in a series of policy reports between 1952 and 1957. Albert Wohlstetter’s study of the Strategic Air Command vulnerability, completed by the RAND Corporation, argued that SAC would not maintain sufficient second-strike capability in the event of a surprise Soviet attack. His recommendations were that (a) long-range bombers be based in North America rather than overseas, allowing for more time to reach full alert; (b) the number of bases be increased and dispersed to make it more difficult for a single strike to eliminate forces; and (c) that a portion of the force be kept on alert status at all times; and (d) that bases be hardened to increase survivability, including bomb-proof hangars for aircraft.

These recommendations became part of national policy when further supported and expanded by the Killian Report (1955) and the Gaither Report (1957). The Gaither Report, in particular, was alarmist in tone and gave impetus to the debate over the “missile gap” that became a key issue in the 1960 presidential election. In fact, Kennedy received advice from Wohlstetter and other RAND theorists.

SAC Adopts Alert Status

In response to these reports, the Strategic Air Command pressed forward with three programs.

First, SAC established new military bases throughout the United States, especially in the Midwest and Plains states. Previously, military strategy dictated that supplies and support be directed to forward lines. Under this approach, bombers were stationed in Europe. With the change made possible by advances in aircraft technology, the military moved bombers to American airfields. This placed a premium on the ability to refuel a bomber while in flight. Offutt AFB saw a huge influx of men, material, and money in 1957 when the Air Force based the new KC-135 refueling planes in Nebraska.

Second, SAC adopted an alert program. Plans called for one-third of all SAC bombers and tankers to be airborne within fifteen minutes of notification. General Thomas S. Power, the new SAC Commander, was the driving force behind this concept, implementing it at selected bases. In his November 1957 memorandum announcing the policy, Gen. Power wrote,

> We no longer have a monopoly in nuclear weapons and long-range bombers. Our own strike forces are no longer immune to destruction before they can be launched and continued improvements in the Soviet's aerial defenses make successful counterattacks more difficult. The only way of insuring the survival of some of SAC’s combat capability, even in case of the most unexpected and massive attack, is our Alert Force. As long as the Soviets know that, no matter what means they employ to stop it, a sizeable percentage of SAC’s strike force will be in the air for the counterattack within minutes after they have initiated aggression, they will think twice before undertaking such aggression.

Third, SAC proceeded with a rapid deployment of intercontinental ballistic missiles in 1955. The Eisenhower administration gave a high priority to the Atlas, a liquid-fueled missile with a range of approximately 5,000 miles, placing it into operational status in three years. Depending on the propulsion system and payload, Atlas had a guidance system accurate enough to land the warhead within two nautical miles of its target. Flying at nearly 16,000 miles per hour, a flight of 6,750 miles took just forty-three minutes. Moreover, once in flight, the ICBM was virtually impossible to intercept.

44 Gen. Thomas Power, “Memorandum to Each Member of the SAC Alert Force,” 9 November 1957 (Memorandum from 55th Wing Archives, OAFB); Also see Air Pulse, 8 January 1958; Office of the Historian, Alert Operations and the Strategic Air Command, 1957-1991.

Thereafter, SAC engaged in developing plans for guided missiles and missile squadron deployment. In 1955 the Air Force began work on a second ICBM, the large liquid-fuel Titan, as a hedge in case the Atlas failed. Three years later it started work on a third ICBM, the solid-fuel Minuteman.46

Beginning in June 1959 the Air Force, in conjunction with its European allies, deployed seven squadrons of Thor and Jupiter intermediate range ballistic missiles (IRBMs) in Europe. The IRBMs had a range of 1,500 miles and were based in Great Britain, Italy, and Turkey. Within the United States, the first Atlas ICBMs went on operational alert in September 1959, followed by the first Titan squadron in April 1962, and the first ten Minuteman missiles in October 1962. The Air Force continued to deploy ICBMs throughout the decade, and by 1969, 1,054 missiles stood poised in their underground silos.

SAC HQ and the New Defense Policies

These changes placed the Strategic Air Command at the forefront of America's Cold War defense. By 1962 SAC Headquarters and Command Center controlled most of the country's nuclear strength. It was the only "specified" or independent command, and managed two components of the U.S. "Triad" of strategic nuclear delivery systems (ICBMs and strategic bombers)—the other being submarine based missiles directed by the U.S. Navy. The Command employed 282,783 people, the highest number of personnel in SAC history. The 38,542 officers, 217,650 airmen, and 26,531 civilians spread over forty-three CONUS (Continental United States) bases and fourteen overseas bases. SAC's resources also included 2,700 tactical aircraft, comprised of 639 B-52s, 880 Boeing B-47 Stratojets and 76 Convair B-58 Hustlers (See Tables One and Two)47

With the advent of ICBMs, the time between detection of a nuclear attack and the response narrowed from hours to minutes. To counter the danger of a surprise attack, SAC developed increasingly sophisticated intelligence capabilities. In 1959 G-Wing was added to the southwest corner of the main administration section (F Wing), built specifically to house an intelligence unit, the 544th Reconnaissance Technical Group, which later evolved into the 544th Strategic Intelligence Wing. (See Photos Ne-9-M-11 to 16)

47 The B-47 Stratojet was the first swept-wing, jet-propelled bomber produced in large numbers by any nation and could accommodate a single gravity nuclear weapon or 10,000 pounds of conventional weapons. The number of B-47s in SAC inventory peaked in 1957, but by the early 1960s they were completely phased out with the emphasis on ICBMs instead of manned bombers. Norman Polmar, ed., Strategic Air Command: People, Aircraft, and Missiles, 79, 160-164, 169-172.
Leo A. Daly designed the new $2.0 million wing, with the Parsons Construction Company of Omaha, Nebraska, winning the construction contract. Completed in April 1960 the G-Wing expansion was a three-story addition with basement measured 88 feet by 113 feet with a total floor space of 53,500 square feet. Although designed to be compatible with the original structure, the windows are of translucent glass block, suggesting the extremely high security required for the operations in this area.\(^{48}\)

The new wing housed SAC’s worldwide global weather information computer systems. The U.S. aerospace programs and SAC shared a common need for accurate and detailed weather information. NASA needed weather maps to launch and track its spacecraft. SAC wanted weather information to provide critical launch information for SAC bombers. The requirement by SAC and NASA for a sophisticated worldwide weather gathering resource led to the development of a global weather information computer system at SAC Command Center, which shared the information with NASA. This weather information center gave SAC pilots the precise weather conditions they might expect enroute to their targets.\(^{49}\)

The Cuban Missile Crisis

Due to expanded intelligence operations under the leadership of Brigadier General Robert N. Smith, SAC’s Director of Intelligence, SAC played a key role in the Cuban Missile Crisis. SAC did not commit extensive resources to monitoring Cuba. However, the Research Center of the 544th Reconnaissance Technical Group, under Lieutenant Colonel Eugene E. Thige, Jr., tracked intelligence information. During the Cuban Missile Crisis, this organization compiled more than 12,000 reports on Cuba alone.\(^{50}\)

The primary intelligence-gathering platforms were the U-2s assigned to the 4080th Strategic Reconnaissance Wing. These aircraft were equipped with a main camera and a secondary system known as a tracker camera. The latter had less resolution that the primary camera system, but precisely tracked the terrain along the route. When the plane returned from its mission, the staff processed the tracker film first, providing interpreters with a preview. If the previews seemed promising, staff could request enlargements of specific areas contained on the primary camera film. Following a mission in June 1962, the 544th’s photo interpreters used tracker film to determine that Cuba was constructing placements for Soviet SA-2 Guideline missiles.

\(^{49}\) Ibid.

\(^{50}\) See Smith, *A Cold War Legacy*, 308-309.
With these initial results, General Smith and Colonel Thige flew to Washington to present their findings, but the Air Staff found the information to be inconclusive. Finally, on 29 June 1962, the 544th Reconnaissance Technical Group photo interpreters reviewed the primary film from a U-2 flight that confirmed the installation of SA2 sites. Based on the stage of construction, intelligence operatives determined that the missiles would not arrive for several months. Throughout the summer of 1962, SAC monitored the construction of airfields and missile sites. Then, between 15 and 20 September, film revealed clear evidence of the medium range ballistic missiles (MRBMs).

On 13 October 1962, Major Richard S. Heyser, a 4080th U-2 pilot, flew over Cuba, landing at McCoy AFB, Florida. General Smith met the aircraft and shipped the primary film to the Naval Photographic Interpretation Center at Suitland, Maryland. A second KC-135 flew the tracker film to Offutt for the 544th to process and examine. Major Calvin B. Olsen and Airman First Class Michael Davis analyzed the tracker film, picking up the MRBM installation. Colonel Thige and General Smith reviewed their findings, and then relayed the information to General Power.

Meanwhile, in Washington, the primary film was processed. It was not until late the following day that the photo interpreters at NAVPIC identified evidence of missiles and missile transporters. They worked through the night and concluded that they were SS-4 MRBSs. On the morning of 16 October, Ray Cline, CIA Deputy Director for Intelligence, and a small staff went to the White House to brief McGeorge Bundy, President Kennedy's special assistant for national security affairs. Bundy then advised the president, setting in motion the thirteen crisis days of October.

SAC played a central role in the American response. During the following weeks, U-2 flights continued intelligence-gathering and interpretation. In addition, SAC forces were placed on full alert throughout the crisis. President Kennedy visited SAC Headquarters on 7 December 1962 and presented General Power with a plaque, citing the command's part in the successful resolution of the crisis. "The airborne alert," Kennedy said, "provided a strategic posture under which every United States force could operate with relative freedom of action."51

The Headquarters Evolves

Although in 1962 SAC Headquarters was the Midwest’s largest office building, SAC’s administration units were still scattered over eleven different locations at Offutt AFB. To bring all administrative units together under one roof, the Air Force decided on a 130,000 square foot expansion of Facility #500, giving the building a total of 685,000 square feet or more than 15.72 acres of office space. This expansion made SAC Headquarters the nation’s second largest military office building, earning the sobriquet, “the Pentagon of the West.” At its peak, it housed 4,600 workers, working three shifts.52

The Leo A. Daly Company designed the extension of Wings C, D, and E, and the new H-Wing, constructed by the Jordan Company of Columbus, Georgia, which submitted the lowest bid. The project was completed in January 1964, finally bringing all SAC activities at Offutt AFB under one roof.

The expansion of Facility #500 came in two forms: first, the original building’s three wings were extended, and, second, an entirely new wing unified the three extensions. Daly’s design extended the three original wings (C, D, and E) by 110 feet, crossing over Mercury Avenue. The thoroughfare remained open, with two stories of each wing built on pillars over the road. The wing extensions were then linked together by a new three-story wing with basement that was 376 feet long and 59 feet wide, designated as H-Wing, which became the new east facade of the building.53

These wing extensions and the east side addition added approximately 130,000 square feet to Facility #500. H-Wing and the extensions of C, D, and E Wings were clad with cream-colored brick to match the original building fabric. Daly followed his original design, relying on the same horizontal window lines, brick color, and visual proportions in the new construction. The addition of H-Wing left enclosed spaces between C and D Wing, and D and E Wing, creating two lawn courtyards. (See Photos NE-9-M-19 to 20, 24)

52 “$8,000,000 at SAC for Addition,” 2 October 1962; “SAC Workers Soon to Have 15 Acres of Elbow Room,” 31 July 1963. Omaha World-Herald.

Offutt Air Force Base, Strategic Air Command Headquarters and Command Center,
Headquarters Building
HAER NO. NE-9-M
Page 29

Joint Strategic Target Planning Staff

SAC Headquarters acquired one of its most significant missions in 1960—the Joint Strategic Target Planning Staff. Historian Richard Kohn voiced a popular conception when he said, “When some people talk about the era of massive retaliation, they assume that all SAC was going to do was wipe out every Russian city and the Russian population, rather than attack Russian military forces.” In fact, the attack required detailed plans, weighing which specific targets to hit, selecting the mode of delivery, and then determining the level of explosive device required to destroy that target. For example, if an airbase outside Moscow is selected as a target, the United States had to choose the specific nuclear weapon best suited to destroy it, then determine which specific long or medium range ICBM or long or medium range bomber should deliver the device. 54

General LeMay made his name using a carefully conceived strategic plan to bomb Japan. He instituted the same planning process on a global scale as CINCSAC—the first real strategic war planning efforts within the United States defense structure. LeMay noted, “We had a war plan of how we were going to fight the war. There wasn’t anything that came out of Washington other than maybe a little guidance on targets that should be hit.” 55

By the early 1950s other services developed the capability to employ nuclear weapons. For example, commanders in the Pacific and Mediterranean could deliver small nuclear weapons, while tactical air units deployed to Europe and the Far East also had limited nuclear delivery capability. Before mid-decade, the Defense Department established procedures to coordinate the use of the increasing US nuclear arsenal and avoid duplication of targeting efforts. These new procedures included Joint Coordination Centers in Europe and the Far East, employed only for operational coordination after the start of hostilities. In the late 1950s Worldwide Coordination Conferences were held but most of the conflicts and duplication of effort remained unresolved. In the final years of the Eisenhower Administration, national leaders recognized the need for unified control over the planning of US strategic forces. The result was the Department of Defense Reorganization Act of 1958, which increased the authority of the Joint Chiefs of Staff.

In August 1960 Secretary of Defense Thomas S. Gates authorized a new agency to develop a cohesive strategic plan, creating the Joint Strategic Target Planning Staff (JSTPS). Although it was an independent agency, Gates placed the JSTPS at SAC Headquarters to take advantage of the Command’s existing planning staff, intelligence capabilities, and communications network.

It reported directly to the Joint Chiefs of Staff and was composed of officers and enlisted personnel of the Army, Navy, Marine Corps and Air Force, plus civilian personnel. A number of JSTPS Air Force personnel were "dual-hatted" with Headquarters SAC, taking full advantage of its existing war planning expertise, intelligence capability and computerization. By the same

55 Ibid..
directive, the Commander in Chief, SAC (CINCSAC) was the Director of Strategic Target Planning while the Vice-Director, a Navy admiral, provided day-to-day direction for the staff. Gates’ plan assigned senior officers from unified or specified commands (Atlantic, European, and Pacific) and Supreme Allied Commands (Atlantic and Europe) to the JSTPS. The staff also coordinated the planning process with the North Atlantic Treaty Organization (NATO).

The JCTPS’ primary mission was the preparation of a National Strategic Target List (NSTL), and development of the Single Integrated Operating Plan (SIOP) to attack those targets. The Staff also coordinates intelligence operations across all services through its Nuclear Weapons Employment Policy Reconnaissance List (NRL) and the Airborne SIOP Reconnaissance Plan (SRP).

JSTPS developed a series of these war plans, responding to major changes in policy at the NCA level. The SIOP became increasingly sophisticated—driven by increased demands for multiple options from the National Command Authority and powered by quantum advances in computer technology.

To produce the NSTL and the SIOP, the JSTPS required three essential ingredients:

- intelligence to determine the military strength, capability, and deployment of foreign countries.
- policy guidance to determine of the relative priority and emphasis to be given to those targets. Political and military evaluation dictates the choice of targets, damage required, and the placement of weapon aim points. Written by the Department of Defense, the Nuclear Weapons Employment Policy (NUWEP) provided the policy guidance as developed by the President and his staff.
- the forces comprising the weapons and carriers available to carry out the plan. Staff carefully planned and timed all sortie routes—a very complex process with each step given standardized nomenclature.

The plan was then tested by a carefully prescribed and controlled series of analyses. How do you test for a nuclear war? This analysis was done through computerized war games (simulation) that measured the consequences of execution. The results are damage expectancy (DE) calculations—mathematical formulas measuring the destruction of Soviet cities, military installations, and command posts.

The originally approved JSTPS personnel strength was 268. After completion of the first plan, staff strength dropped to approximately 180 personnel, the normal authorized strength for the next few years. Before the end of the 1960s the JSTPS required additional spaces as personnel

increased to close to 300, using increasingly sophisticated computers. The trend continued throughout the 1970s, with staff reaching nearly 350 people by 1978 and 400 in the 1980s.

The JSTPS used space in the underground control center, taxing its capacity. In 1972 a new 21,600 square foot "hardened" basement was added to the eastern basement wall of Wing B of Facility #500 adjacent to the underground command center. Known as J-Wing, the new subterranean building—designed by the architecture firm of Leo A. Daly Company—housed support operations of the JSTPS. Measuring 126 feet by 192 feet, J-Wing included office and meeting spaces, plus computer equipment rooms.(See Photos NE-9-M-21 to 23)57

The Arms Race and Detente

Cold War tensions began to warm after 1964, when the Soviet Union ousted Premier Nikita Khrushchev from power, eventually replaced by Leonid Brezhnev and Aleksei Kosygin. A series of actions—known as “peaceful coexistence” or “détente”—indicated that both parties were eager to slow the arms race. In 1968 the United States, the Soviet Union, along with fifty-eight other nations, signed the Nuclear Arms Proliferation Treaty.

Then in 1969, Strategic Arms Limitation Talks (SALT) began between the United States and the Soviet Union. The Soviet Union planned extensive deployment of an antiballistic missile system (ABM). To counter, the United States developed the MIRV system, targeting multiple nuclear warheads with one missile, negating the effectiveness of the Russian ABMs. This escalating arms race hit the budgets of both countries. In 1972, the two countries signed the SALT I agreement freezing the number of ICBMs and SLBMs and restricting development of antiballistic missiles. Thereafter, President Richard M. Nixon and Premier Brezhnev signed an agreement on the basic principles of détente in hopes of relaxing Cold War tensions.58

While the thawing of relations between the United States and the Soviet Union continued, SAC went through a period of steady downsizing. SAC personnel dropped from 163,754 persons in 1973 to a low point of 118,967 officers, enlisted men and civilians in 1979. During the years 1973 to 1979, SAC commanders in chief changed several times as well. Presidents Gerald Ford and then Jimmy Carter reduced SAC’s overall tactical aircraft and strategic bomber strength. Furthermore, in 1977, President Carter cancelled the production of the Rockwell International B-1 Bomber, the next generation of SAC bomber, designed to replace SAC’s aging fleet of B-52s.

The President and the Department of Defense (DOD) instead favored the development of Air Launched Cruise Missiles (ALCM) from launched platforms, such as the B-52. In June 1979 Carter and Soviet Premier Leonid Brezhnev signed the SALT II agreement, which limited long-range missiles and bombers.\(^{59}\)

Nonetheless, coexistence came to halt in December 1979, when the Soviet Union invaded Afghanistan. Thereafter, President Carter called for a major military buildup to counter Soviet military power and in July 1980 signed Presidential Directive, which called for the military capacity to wage limited and protracted nuclear war.

The Reagan-Bush Years

The Increased Defense Budget

With the inauguration of President Ronald Reagan in 1981, American foreign policy swung even farther away from detente. President Reagan talked tough with the Russians, calling them “the evil empire.” To back his tough foreign policy, President Reagan sharply increased defense expenditures for conventional and nuclear weapons, dramatically escalating the arms race. For instance, in 1981, Reagan immediately reversed Carter’s decision on the B-1 bomber and directed DoD to construct and deploy 100 B-1 bombers as soon as possible.\(^{60}\)

During President Reagan's first term, SAC Headquarters SAC benefited from increased defense budgets. In 1981 the Department of Defense authorized SAC to construct a new 43,000 square foot building over the hardened basement J-Wing—officially designated as J-Wing Phase II. The three-story J-Wing housed new highly sophisticated computer systems. The architecture firm of Leo A. Daly Company designed the addition. Based on security requirements, the addition has no windows. The interior floor plan provided for extensive open space for computer workstations and storage of tapes. The J-Wing addition to Facility #500 was completed by September 1982.\(^{61}\)

A New Command Center

One year later, the Scowcroft Commission recommended modernizing U.S. strategic weapons systems, and SAC asked for and received a new upgraded command center, which was funded in 1987 and constructed in 1989, the first major upgrade of the subterranean facility in more than thirty years. After exploring funding and construction alternatives, SAC opted to build a completely new underground complex adjacent to the existing one. Again, the Leo A. Daly Company was chosen to design the new hardened two-story underground command center, while the Defense Systems Group of TRW, Inc. won the construction contract. The new subterranean building was completed in 1989 at a cost of $65 million. 62

In 1989 the command post moved into the newly constructed upgraded underground addition to Facility #501. This 19,000 square foot addition—measuring 71 feet x 122 feet—was constructed of reinforced concrete walls and roof and adjoined the old SAC command center.

The new command post offered a larger space for the battle staff. The new addition contains most of the command and control resources needed to operate SAC missile, bomber, serial tanker, and reconnaissance forces in a time of crisis. The addition also included state-of-the-art voice, data, and image communications systems to display vital information to the battle staff. A metal electromagnetic pulse (EMP) shield completely encloses the structure. 63

In addition, SAC completed a major renovation of the old underground space. The executive office suites in Building #501, without major renovation for more than twenty-five years, were in a serious state of disrepair. Worn ceilings, shoddy floor covering/finishes, and inadequate lighting complemented by impromptu repairs over the years, reflected finishing materials that had outlived their usefulness. Two contractors, Slechta, Inc., Omaha, Nebraska, and F&B

 Constructors, Omaha, Nebraska, completed the renovations between June 1983 and February 1986 at an overall cost of $503,000.64

Rehabilitation of Building 500

Interior Renovations

Federal funds flowed into Building #500 as well, as SAC completed a major renovation of the aboveground headquarters. Staff complained about the deteriorating conditions. A memo stated:

In a serious state of disrepair, most office walls were nonstructural partitions, deteriorated, and in need of removal or replacement. Worn floor finishes were also in dire need of replacement. Without any major renovation in the past twenty-seven years, heating, cooling, and ventilation components, subject to continuous fragmentary repairs had outlived their usefulness and were no longer effective.

SAC awarded a $1,068,000 contract to the Linde Construction Company of Omaha to refurbish the primary office spaces. Linde began the work in September 1985 and completed the work in January 1987.65

Similarly, Sheppards’ Business Interiors of Omaha won a contract to replace and refurbish moveable partitions installation in Building 500, with work continuing from November 1985 through August 1989. The projects cost approximately $8,000,000 for the carpet and furniture replacements, while the moveable partitions cost $490,000.66

Exterior Renovations

The exterior of Building #500 changed in the 1980s. Existing windows in the original building and H-wing posed high cost maintenance, energy, and efficiency problems. Deteriorated window

64 Ltr (U), SAC(CS) to SAC Staff, Distribution A, "Upgrade of DCS Office Suites," 1 Oct 82; Ltr (U), 3902 ABW(LGCV) to Astel, Ericson, & Associates, Omaha, Nebraska, "Notice to Proceed, Contract F2560083-C0039, Project 4E, Alter/Repair DCS Suites, Bldgs 500/501," 12 May 83; Memo (U), SAC (DEA), "Alter/Repair Office Area Bldg 501," 21 Oct 87.

65 Ltr (U), SAC (DEE) to SAC (SPE), et al, "Upgrade Staff Offices, Bldg 500-Construction Schedule," 6 Feb 86; Ltr (U), Linde Construction Company to Procurement Division, 3902 ABW/LGCV, "Bid Confirmation, Project No. 84-0059 A/B, Alteration Repair Office Areas, Building 500," 13 Sep 85; Intvw (U), M. Hagopian, Historian with LtCol R. Gammon, SAC (DEA), 29 Oct 87; Memo (U), SAC (DEA), "DCS Site Refurbishment (Alter/Repair Office Areas, Bldg. 500)," 21 Oct 87.

66 Memo (U), SAC(DEA), "Action Officer and Staff Officer Office refurbishments (Repair Office Areas, Bldg. 500)," 21 Oct 87; Ltr (U), SAC(DEE) to SAC(SPE), et al, "Upgrade Staff Offices, Bldg 500-Construction Schedule," 6 Feb 86.
seals, inoperative windows, broken doors, and missing storm panes, allowed air infiltration into Building #500, contributing to serious heating and cooling problems. Consequently, SAC awarded a contract in the amount of $945,000 to the Guyco Engineering Company of Lampasas, Texas, to replace all the windows (approximately 2,000) and doors in Building #500 between April 1987 and January 1988. One-inch energy efficient, tinted, thermophane aluminum-framed glass windows were installed providing an accumulative cost benefit due to increased energy savings.

In addition, contractors completed ceiling repairs in both buildings in September 1987, including complete rewiring, acoustical tile on lowered ceilings, air conditioning diffusers, and new recessed light fixtures. Although these changes altered the interior finishing, sections of G-Wing were left unchanged.

STRATCOM Takes Over

By the time that the new underground command center became operational, the Cold War was moving rapidly toward a conclusion. A new round of arms reduction negotiations, labeled START, began on 29 June 1982 in Geneva, Switzerland. Although the talks stalled in early stages, a geopolitical earthquake transformed the Cold War during the 1980s. New Soviet Premier Mikhail Gorbachev introduced the two new policies at a Communist Party conference on 10 December 1984: perestroika, or restructuring, and glasnost, or openness.

Although meant as reforms to invigorate a faltering economy, the Soviet leadership soon found the changes tumbling out of their control. In November 1989 the world witnessed the destruction of the Berlin Wall. This milestone marked the start of a rapid series of events that altered international relations and the strategic posture of the United States. Within eight months, the U.S.S.R. began to withdraw its forces from Eastern Europe, laying the foundation for the

With the threat of a surprise Soviet attack diminished, the Department of Defense recommended the Air Force take the Looking Glass flights off constant airborne alert. President Bush overruled the recommendation at first, hesitant to halt a mission that held such symbolic value to the United States. The New York Times reported, “The White House apparently felt that ending round-the-clock flights might increase a public perception that the United States was moving too fast to cut military capabilities.” Secretary of Defense Cheney reexamined the issue and convinced Bush to accept SAC’s recommendation. Casey One, the CINSAC’s EC-135 aircraft, took off from Offutt AFB at 6:59 a.m. on 24 July 1990 with General John T. Chain on board as the Airborne Emergency Action Officer. When the aircraft landed at 2:28 p.m., almost thirty years of continuous airborne command post operations ended.70

On 28 September 1991 SAC Commander General George L. Butler ordered all SAC bomber and missile forces taken off alert. SAC stood down on 1 June 1992, transformed into the United States Strategic Command (STRATCOM), a simplified and unified command.71

While its mission was similar to its predecessor, its structure and role reflected the changing international political landscape. With STRATCOM, for the first time in U. S. history, the planning, targeting and wartime employment of strategic forces came under the control of a single commander while the day-to-day training, equipping and maintenance responsibilities for its forces remained with the services—the Air Force and Navy. Even with the change of command, the installations continue to exist under the authority of the United States Air Force (USAF). The base's host unit, the 55th wing, was placed under control of Headquarters, Air Combat Command (ACC), located at Langley Air Force Base, Virginia.

STRATCOM’s mission is to deter military attack on the United States and its allies, and should deterrence fail, employ forces to achieve national objectives. Responsibilities include:

- Providing intelligence on countries possessing or seeking weapons of mass destruction
- Providing support to other combatant command commanders
- Developing a Single Integrated Operational Plan that fully satisfies national guidance
- Monitoring the readiness of SIOP committed forces

• Commanding, controlling and employing assigned forces

Set up in six key areas, STRATCOM is organized under a directorate system, each responsible for a specific requirement.

• Office of the Commander in Chief (CINC) and the staff support agencies. This area establishes the goals, mission, vision and leadership of the command. To help the commander, the immediate staff also includes the deputy commander in chief and a group of special advisors.

• Manpower and Personnel assigns and oversees all military and civilian programs, including training and professional development.

• Intelligence collects and assesses raw intelligence data and converts it into useful inputs for DoD, STRATCOM, unified commanders and other national agencies.

• Operations and Logistics ensures the readiness and capability of our strategic forces. J3/J4 operates the Command Center and is responsible for the airborne and ground mobile command posts.

• Plans and Policy develops and maintains the U.S. nuclear war plan; and contributes to issues such as arms control, countering the spread of weapons of mass destruction and determining the future strategic force structure.

• Command, Control, Communication, Computers (C4) Systems/Chief Information Officer (CIO) designs, operates and supports innovative, highly secure computer, information retrieval and global communication systems used in war planning, intelligence gathering, and command and control of strategic forces.

STRATCOM is a unified command. Personnel come from all four services, employing more than 2,100 people, with the greatest concentration being Air Force, followed by the Navy, Army and Marines. In addition, some 340 full-time civilians perform day-to-day duties and maintain program continuity.

Two changes took place at the former SAC Headquarters. First, in 1992, an one-story 250-seat theater was added off the north wall of Wing B of the main administration building, adding another 4,800 square feet to Facility #500. Then, in a bow to the new unified command, a Navy Trident missile stands in front of the building. (Photo NE-9-M-4)

Information provided by the Public Information Office, STRATCOM, Offutt Air Force Base.
SAC Headquarters Operations

The “Pentagon of the West”

To summarize the daily routines and staffing at a complex as large as SAC Headquarters is an elusive task. Missions changed and units transferred or reorganized every year. The following section looks at some important missions that have served in the building.

Administration and Public Spaces

SAC Headquarters became one of the most visible military buildings in the world. The Commander in Chief frequently hosted presidents and congressional leaders, as well as luminaries from the entertainment world. (See Photo NE-9-M-69) As one writer suggested, SAC was consummately aware of their image. As part of the “ceremonial” space, the Headquarters welcomed guests through the main entrance, featuring an inlaid SAC seal on the floor. From there, they could be whisked upstairs to the CINCSAC’s office. In recent years, STRATCOM installed an interpretive exhibit area and theatre on the northwest entrance as well, where official hosts begin community and corporate group tours. (Photos NE-9-M-41 and 42)

Security forces carefully monitor entrance and egress. General LeMay strongly emphasized the need for security, routinely dispatching trained ‘penetrators’ to plant notes that said, “This is a simulated bomb that will explode in five minutes.” On one occasion, LeMay entered his office and found soldiers repairing phone lines. Remembering that the Air Force used outside repair people, the General pulled his pistol and lined them against the wall. It had been a test, and LeMay passed with flying colors.

Low brick walls surround the perimeter (Photos NE 9-M-8 and 9) with a visitor’s entrance route directed past sentry posts. (Photos NE-9-M-39 and 40) The “Elite Guard” monitor interior and exterior activity with the aid of television cameras. (Photo NE-9-M-54) Written documents often end up in the paper shredding facility. (Photo NE-9-M-55)

Maintenance

Given the sheer size of the complex, its operation and maintenance requires a substantial infrastructure. In many ways, the interior resembles any other corporate headquarters, including a large dining area, janitorial service staff space, and a medical suite. (Photos NE-9-M-37 and 38) A chaplain maintains office space, as does the Office of Historian, STRATCOM.

73 Phil Patton, “Dr. Strangelove’s Children: Growing Up on a Cold War Base in the Shadow of the Big One,” American Heritage 49 (November 1998), 92-102. General LeMay could not recall the incident, however. If apocryphal, the story was often told as a means to reinforce the importance of security. One might be willing to challenge a foreign intruder, yet quaver at the thought of facing LeMay’s wrath.
It was an enormous task to make sure that the lights, heat, and air-conditioning worked. In its early decades, two 13,800-volt feeders provided electrical power, which was then distributed throughout the building to ten separate substations. Air conditioning and heating for the main building came from a central heating and chill water refrigeration plant. This included two units of 1050 horsepower each, driven by steam turbines, plus two electrical centrifugal chill water refrigeration units, 750 and 500 horsepower. Steam came from three 600 horsepower 120 psig boilers with gas burners and oil standby. The underground structure received air conditioning by pumping chilled water from the main building for distribution through large air handling units on each floor of the underground. There is a 470-ton emergency air conditioner system for the underground. (See Photo NE-9-N-14) 74

Finance and Accounting

Other aspects of routine administration included an important finance and accounting agency. Before the 1990s, the Air Force Audit Agency (AFAA) maintained office space in SAC HQ, supervising accounting and executing audits. The AFAA reported to the Air Force Comptroller and Secretary of the Air Force for Financial Management through the Auditor General. Air Force auditors examine policies, systems, procedures, and controls employed in the management of the Air Force's multifunctional operations.

In 1991 the separate service financial comptrollers became the Defense Finance and Accounting Service (DFAS). The Omaha Operating Location was activated March 31, 1995, with offices in SAC HQ. The Omaha OPLOC is responsible for providing financial management service for thirteen active duty bases, the Air Force Academy, two Air Reserve Wings, twenty-five Air National Guard units, and the National Imagery and Mapping Agency (NIMA).

Intelligence

55th Strategic Reconnaissance Wing (55SRW)

The Air Force assigned the 55th Strategic Reconnaissance Wing to Offutt AFB on 16 August 1966. The mission of the 55th Strategic Reconnaissance Wing was to conduct global-scale strategic reconnaissance missions independently or in cooperation with other forces and to fulfill requirements for strategic reconnaissance as directed by higher authority. Specific aspects of the mission included operation, maintenance, and support of an airborne command post continuous operation, plus the operation, staffing, and maintenance of the Advanced Airborne Command Post as a part of the National Military Command Control System (NMCCS). In addition, the 55th Wing provided receiver air refueling training for RC/EC/KC-135 aircraft pilots; handled administrative airlift requirements levied by Headquarters, Military Airlift Command; and maintained all aircraft assigned to Offutt AFB.

Global Weather Central was established on 15 March 1949 at Offutt AFB, Nebraska, to support the Strategic Air Command (SAC). It was during the late 1950s that the marriage of computers and meteorology blossomed, with Global Weather Central sharing SAC's IBM 704 computer.

This growth brought about the first major organizational change. The USAF Weather Central which had moved to Suitland, Maryland, in 1955 from Andrews AFB, moved to Offutt AFB on 11 November 1957 to combine with Global Weather Central. The combined units formed Det 1, 3rd Weather Wing (3 WW), and were located in the SAC underground. By 1960 Global Weather Central exceeded the computer time SAC itself used, and purchased its first computer, an IBM 7090, which became operational on 24 October 1960. Automation continued to expand through the addition of an IBM 1401 in November 1961 and an International Telephone and Telegraph Automatic Data Exchange 6400 in 1962.

Global Weather Central helped to transform weather forecasting within the military and pioneered techniques that filtered into civilian meteorology. Many meteorological firsts were credited to GWC, including automated aircraft condensation trail forecasts in 1958, computer wind factor forecasts in 1961, and computerized stratospheric analyses and numerical cloud forecasts in 1962. The first automated facsimile charts were produced in 1963 and the Global Weather Central began receiving meteorological satellite data using Air Weather Service's first Automatic Picture Transmission station at Offutt AFB.

The first Air Force numerical forecasting model became operational in 1964. This was followed in 1965 with the first automated command and control support to SAC, the USAF, and the Joint Chiefs of Staff. By this time there were 300 people assigned to Global Weather Central, including twenty-five at four operating locations throughout the US.

In 1965 the Department of Defense established the Automated Weather Network (AWN), the first worldwide high-speed data collection network. Two UNIVAC 418 computers were installed in the Martin Bomber Building as the Offutt Terminal of the AWN. That same year the Department of Defense established a terminal at AFGWC to process meteorological data from Department of Commerce meteorological satellites.

On 8 July 1969, the 2 Weather Service was deactivated and the organization was officially redesignated as Air Force Global Weather Central (AFGWC), a named organization directly under Headquarters, Air Weather Service (HQ AWS). In 1969 the construction of the main facility in the Martin Bomber Building and the installation of four UNIVAC 1108 computers were completed. At that time AFGWC had 440 people assigned. Although its primary operations moved out of SAC HQ, it maintained staff in the building to receive and interpret information for the battle staff.

The Air Force Global Weather Central had the responsibility of providing aerospace environmental services on a global basis to conventional and space operations of the United
States Air Force, the United States Army, and other DOD and governmental agencies as directed by USAF. AFGWC was the largest military meteorological facility in the world with resources consisting of over 700 scientists and technicians and five large UNIVAC computer systems. The concept of operations was to construct the world's most comprehensive environmental database and apply the data to the specific operational requirements of the military decision maker.

544th Aerospace Reconnaissance Technical Wing (544 ARTW)

The Air Force assigned the 544th Reconnaissance Technical Squadron (RTS), predecessor to the 544 ARTW, to Offutt AFB on 16 November 1950. On 11 July 1958 the Air Force redesignated the 544 RTS as the 544th Reconnaissance Technical Group, then as the 544 ARTW in January 1963. The mission of the 544th Aerospace Reconnaissance Technical Wing was to provide the SAC Commander with up-to-date intelligence about nuclear forces throughout the world. By 1992 the 544th grew to more than a thousand personnel and operated the largest intelligence analysis activity in the Air Force. With the creation of USSTRATCOM in 1992, the 544th became the Joint Intelligence Center. (STRATJIC) 75

Planning

The Office of Operations Analysis—or the “Ops Annies”—were a group of civilians in a special agency who worked on a variety of tasks in support of SAC operations. The Office gathered physicists, mathematicians, and technicians as SAC’s research and development department. Carroll Zimmerman, the first agency head, wrote, “Much of our time was spent in the development and explanation of models for use in such things as determining bombing accuracy, damage from nuclear weapons, probabilities of kill, confidence intervals, and other factors.” 76

A few examples shed some light on the work of this unique agency:

War Gaming Models

Working with the RAND Corporation, the Operations Office studied the capabilities of Air Force and Soviet missiles and airplanes, and then developed mathematical models to test various strategies and tactics. There were an overwhelming array of choices that included evasive maneuvers, frequency jamming, air speed, and selection of routes. Zimmerman recalled the presentation of the “1959 War Game” to the Director of Plans, using “a series of overlays on a map, depicting the entire target system and enemy order of battle, with paper, pencils of various colors, slide rules, and a small electric calculator.” As SAC’s computer abilities improved, the Operations Office produced increasingly sophisticated “War Games.” 77

76 Carroll Zimmerman, Insider at SAC, 47.
77 Ibid., 34.
Bomber vs. MiG

The SAC Tactics group came to the Operations Analysts to determine the capabilities of the B-47 against a MiG-15. When a Polish defector turned over one of the fighters, the Ops Annies studied its capabilities. While test pilots were not particularly happy with the comfort or control system of the aircraft, they were pleased with its maneuverability. An Air Proving Ground pilot and a SAC pilot flew a B-47 with an Ops Annie, Richard J. Camp, cramped behind the copilot. No matter how hard the B-47 tried, it could not shake the MiG. Camp timed each attack and took notes on the events. The Operations Analysis showed that the B-47 was defenseless against the MiG and recommended changes. Later Operations Analysis studied the B-52 resulting in a paper entitled “B-52 Livability.” Their report showed that the B-52 could out-maneuver the MiG-17.78

SAC Missile Development

Operations Analysis contributed to the development of an array of strategic missiles, including the Atlas, Minuteman, Titan, short-range attack missile (SRAM), and air-launched cruise missile (ALCM). Single stage, liquid-fueled rocket engines fueled the initial SAC ICBMs. The liquid fuel was extremely dangerous but it was the best available source to produce the thrust capability for getting the missiles to the top of their trajectory. Operations Analysis determined that multiple-stage solid fuel rockets avoided the problem, since the later stages could be ignited in the rarefied atmosphere.

The term Operations Analysis became the Office of Science and Research on 1 September 1971. SAC closed the entire branch on 31 December 1989, leaving a legacy in methodology for analyzing complex problems, determining root causes, and providing viable methods of overcoming the problems.

Command, Control, Communications and Computer (C-4)

General Thomas Power once remarked, “Without communications, all I command is my desk.” STRATCOM Headquarters remains one of the most technologically advanced office complexes in the world. Its military staff makes decisions based on vast quantities of information pouring into the building through advanced communications systems. In turn, once the Commander issues orders, they travel throughout the world.

1st Aerospace Communications Group (1 ACOMMG)

In 1948 the 30th Communications Squadron moved to Offutt Air Force Base with SAC. On February 1960 portions of the 30th Communications Squadron became the 1st Aerospace Communications Group and was assigned to the 3902 ABW for administrative and logistical support. The mission of the 1st Aerospace Communications Group was to install, operate, and

78 Alwyn Lloyd, A Cold War Legacy, 229-231.
maintain communication facilities as required to provide voice, record, and data communications service to Headquarters, Strategic Air Command; 3902d Air Base Wing; and all tenant organizations of Offutt Air Force Base.

Strategic Air Command Communications Area (SACCA)

The Strategic Air Command Communications Area (SACCA) was established on 1 July 1976. The purpose of this organization was to centralize base-level communications units under a single management structure. SACCA’s management assured the continued responsiveness to SACCA served in a dual role as the SAC Directorate of Communications/Electronics.

Computer Services Squadron (CPUSS)

SAC’s Intelligence Data Handling Systems served such strategic functions as deployment of forces, crisis management, and operational planning. SAC employed computers beginning in 1954, using its first vacuum tube computer to develop its strategic plan.

On 1 April 1972 the 3900 Computer Services Squadron (CPUSS) went under the operational control of the SAC Chief of Staff. The mission of the 3900th Computer Services Squadron was to provide data automation services to the JSTPS (Joint Strategic Target Planning Staff); Headquarters, Strategic Air Command; and the 3902d Air Base Wing. In 1972 SAC consolidated ADP management, planning, and control in its data automation division.

In mid-1984 SAC became the first major command to create the position of deputy chief of staff for communication-computer systems. This united the separate data automation and communication-electronics staffs under centralized management.79

The Underground Command Center

What happened in the Command Center?

As the nerve center of the United States Strategic Command, the USSTRATCOM Command Center is prepared to transmit National Command Authority directives to strategic aircraft, submarines and missile forces. The USSTRATCOM Command Center is located in the Underground Command Complex. Also located within this complex are the Intelligence Operations Center, Weather Support Center, Force Status Readiness Center and other support offices.

The Command Center is a two-level, 14,000-square-foot reinforced concrete and steel structure containing the critical information management and communication systems to provide the

STRATCOM Commander in Chief (CINCSTRAT, previously CINCSAC), an assured capability to manage forces worldwide. In time of war, the underground would be sealed off. An underground emergency power supply, a well supplying an emergency water source, and rations would allow continuous operations without outside support for an extended period of time. Electromagnetic pulse protection provided for critical command, control and communications equipment as well as supporting utilities. This allows CINCSAC to continuously exercise command over USSTRATCOM forces, even in the disturbed electromagnetic environment that would follow a high altitude nuclear burst.

When the Command Center is self-contained, CINCSTRAT and members of the senior staff work in the lower level senior battle staff area, while support staff members take designated positions in the support battle staff area on the second floor.

Workstation consoles provide CINCSTRAT and senior and support battle staff members state-of-the-art integrated secure/nonsecure voice communications and data management systems. Individual video monitors at each console position provide an advanced capability to display information essential to decision making and to manage the command's aircraft and missile forces. Support battle staff members have individual computer terminals which access an advanced automatic data processing system that provides word processing, spreadsheets, computational aids, graphic/tabular decision making information and automated briefing preparation and presentation.

The Command Center's group display and briefing support system provides the capability to display full motion video and still frame imagery on eight large wall screens and individual video monitors. It also allows video communications between the Command Center and weather and force status readiness centers; the capability to convert hard copy, 35 mm slides, or overhead transparencies into video; and rapid access to worldwide maps. Within seconds, vital operational data can be displayed on the large wall display screens or individual computer monitors. The primary system for storing and supplying this data is the USSTRATCOM Automated Command Control System. Information about weather, force movements, aircraft and missiles is stored in computers, ready for immediate access. Field units continually update the data.

In time of war, the computers would record strike force progress, serving as an invaluable aid to CINCSTRAT in making command and operations decisions. Because the information is processed automatically, the battle staff would have immediate and continuous updates on its strike force.

The Primary Alerting System, using dedicated telephone circuits, enables USSTRATCOM controllers to speak directly to approximately 200 operating locations throughout the world.

80 The description of the current STRATCOM Command Center comes from information provided by the Office of Public Affairs, STRATCOM, Offutt Air Force Base.
including missile launch control centers. Through this "Red Phone" system, each unit receives coded messages giving notice of an actual or practice alert. The Senior Controller also has a direct line to the National Military Command Center in Washington, DC, and to the other major command headquarters. This system, called the Joint Chiefs of Staff Alerting Network, allows CINCSTRAT prompt contact with the President, the Secretary of Defense, the Chairman of the Joint Chiefs of Staff, and other unified commanders.

Through satellites and radio networks (VLF, LF, UHF and HF), the Command Center can communicate with aircraft in flight over any part of the world. A principal purpose of these networks is to pass National Command Authority orders to the alert forces. Several detection systems provide the USSTRATCOM Command Center with Intercontinental Ballistic Missile (ICBM) and Sea-Launched Ballistic Missile (SLBM) attack warnings. This information is processed through high-speed computers for display on the Command Center's large screens, the CINCSTRAT's video monitors, and the Warning System Controller's video monitors.

Information shown on these screens would instantly alert the Senior Controller of an ICBM or SLBM attack against the North American continent or our allies. These systems, along with summary information and attack assessment from other military commands, permit CINCSTRAT to protect his force pending the presidential decision. Although CINCSTRAT can launch aircraft for survival, only the President can order nuclear strikes. In the event the USSTRATCOM Command Center becomes inoperable, control of strategic forces would be passed to the USSTRATCOM Airborne Command Post, which is ready to become airborne 24 hours a day.

Routine Activities

The daily routine and procedures in the Command Center change regularly so that any description provides only a snapshot of the responsibilities of the staff and the technological support available to accomplish their mission.

One writer provided a glimpse of operations in the old command center on the night of 2 June 1980:81

A few minutes before midnight, five uniformed air force officers of the Strategic Air Command gathered in the entrance to the seven-story headquarters building at Offutt Air Force Base. They signed their names on the duty roster, clipped plastic tags saying "Alert Crew" to their blue cotton shirts, and, clutching brown-paper lunch bags, walked along a corridor lined with photographs of past SAC commanders to an unmarked door. Down four flights they checked in at a desk manned by an armed guard and continued along a gray, concrete-lined tunnel that sloped deeper under ground. They passed through two open, solid steel doors and checked in at a second desk also manned by an armed guard. Beside the desk

was another unmarked door that was opened when they knocked on it, and the five men disappeared into a darkened room forty-six feet below the ground. They were the officers on the midnight shift in SAC's underground command post, the so-called Delta Team who would spend the next eight hours watching and waiting for any sign that the Soviet Union had started World War III.

Inside the underground post the five officers, with a supporting staff of six enlisted men, took their seats facing a bank of videoscreens and telephone switchboards on the floor of the room, about the size of a football field, with walls twenty-one feet high. The lights are dimmed. The crew faces a wall covered by 16-foot-square screens that display a variety of information about the status of SAC's forces around the world: how many missiles are ready to be launched, how many bombers are ready to be scrambled, whether computers at the early-warning stations are "up" or "down," what the time is in Tokyo or Cape Town or Moscow. In a glassed-in gallery overlooking the alert crew, a dozen empty brown armchairs stand ready for the worst — an emergency requiring the presence of the SAC commander in chief, a four-star general, and his aides.

The next eight hours would be punctuated by rigorous routine checks of the early-warning system and of the alert status of SAC's forces around the world. Periodically, the crew in the underground bunker would make contact with the crew in the airplane airborne command post, then code named Looking Glass because in the air it reflected the mission of the underground command post.

After exchanging notes with the outgoing shift, the Delta Team senior controller, a full colonel, took the chair in the middle of the line of switchboards and videoscreens. Like all men on the alert teams, the colonel was handpicked, his background and work habits approved by the Air Force's Human Reliability Program. To the colonel's left sat the Warning System Controller, nicknamed the Wise, whose job is to keep in touch with NORAD and watch two video screens, either of which can track the paths of incoming missiles on an outline map of the United States.

If unusual activity was detected, the Wise could enter a command on one of his two computer keyboards calling up a checklist, known as the "decision-matrix," from the computer's memory. The list told him what buttons to push to get more information about the apparent missile threat before calling the Pentagon. The senior controller alerted the SAC bomber crews and put the missile crews on a higher state of readiness. The low warbling tone of an internal alarm broke the silence in the bunker and a red, revolving light flashed eerily around the command post.

As the controller pressed the red alert button on his console, he also selected a standard, coded message to be transmitted down the line. The code was "Skybird," ordering the bomber crews to board their planes, start their engines, and stand by for further orders. The major sitting to the right of the controller, known as the Emergency Action Officer, prepared a telex containing confirmation of the controller's Skybird signal. The message was checked for
accuracy by another member of the Delta Team in accordance with the strict "two-man" rule
governing the execution of any orders having anything to do with nuclear weapons-from
guarding them in storage to firing them. The major then read the coded order into the red
phone while another crew member listened to check that it was read correctly.

Next the controller would pick up the blue phone to check the missile information on the
Wise's screen with the senior controller at NORAD, 500 miles away in Colorado. If there
were an invasion, the NORAD battle staff sitting in front of their video screens inside
Cheyenne Mountain should be able to confirm it quickly. On a day-to-day basis NORAD
tracks anything from missiles to the 4,600 manmade satellites, including pieces of "space
junk" from old broken-up space craft to certain physical phenomena, such as sun spots,
meteorites, and even moonbeams.

The “Red Phone”

Both the battle staff and the SAC commander had permanently open telephone lines to SAC
operations worldwide and to the National Command Authority in Washington. Although the “Red
Phone” gained the widest notoriety, there were seven special telephones on a desk in front of the
SAC Commander.

- A gold phone linked the commander with the Pentagon. In wartime, the Joint Chiefs would
 use the line to relay commands from the president to SAC and the rest of his armed forces. In
 theory, and if time allowed, the president himself would use it to seek the advice of his
 nuclear generals, whose weapons are a part of the SIOP. The line was not secure, however,
 because it travels over the regular, commercial, open lines.

- A black phone encrypted a voice at one end and automatically decoded it at the other, a
 method that takes a few seconds longer to transmit and to receive. The commanders used this
 phone to ensure that their messages will not be understood by outsiders.

- A red phone, marked Primary Alerting System, was the direct link to SAC’s missile sites and
 bomber bases. It carries the initial coded alert order over open lines. To the untutored eye, the
 messages would appear as an unintelligible jumble of letters, but, once decoded, they tell the
 missile crews to prepare to launch their missiles, and the bomber crews to scramble their
 B-52s.

- A gray phone was the command post's normal link to the 352 SAC operations around the
 world.

- A blue phone connected SAC to the North American Aerospace Defense Command
 (NORAD) bunker in Cheyenne Mountain.

- A pink phone was plugged into the local telephone company for normal, direct-dial calls.

- A white phone was part of the internal Offutt base system.
A Comparison of Underground Defense Command Centers

Following the construction of SAC's underground command center, two important commissions reviewed the need for a hardened site. One, known as the Winter Study, had two dozen separate panels and 140 participants from various Air Force agencies, the electronics industry, and other military consultants. The full-time director was Gordon Thayer, a vice-president of the American Telephone and Telegraph Company.

New defense secretary Robert McNamara ordered a second task force under a former NORAD commander, General Earl Partridge, to study the new needs of the command and control system. Both studies finished their work by the end of 1961 and both concluded that the current command and control system was vulnerable to missile attack and should be "hardened" and made survivable. The panels offered two primary solutions: bury the command posts underground, or make them mobile, in other words, airborne. With a survivable system, the president had a longer decision time and the ability of a more controlled reaction to an attack.

The Kennedy Administration combined these recommendations with other reports on the nuclear command structure to create the Worldwide Military Command and Control System (WWMCCS, or "Wimex"), placed into effect on 16 October 1962.

The Kennedy administration began construction of two such "hardened" command posts, the Alternate National Military Command Center, buried in a mountain in southern Pennsylvania about seventy miles from Washington, and a new home for NORAD, a hollowed-out granite mountain called Cheyenne, in Colorado. Two other "soft" command posts already existed, the National Military Command Center on the third floor of the Pentagon, and Strategic Air Command's underground bunker at Offutt Air Force Base. The president also had a third "soft" command post in the White House Situation Room, a small, windowless, wooden box, twenty by twenty-five feet, in the basement of the West Wing of the White House. 82

The National Military Command Center

The National Military Command Center, in the Pentagon, was set up in 1959 during the panic over Sputnik I and known as the "Joint War Room Annex." It had direct communications with all subordinate command centers around the world. Like the other special posts, it has links to the nuclear forces, enabling the commanders to bypass other echelons of command and deliver the "Gold Codes" directly to the missile silos, the bomber crews, or the submarine commanders.

82 There was an additional underground facility for members of Congress, built at the Greenbrier resort in White Sulphur Springs, West Virginia. However, this was not part of the WWMCCS. See Thomas Mallon, “Mr. Smith Goes Underground,” American Heritage 51 (September 2000), 60-68.
The Alternate Military Command Center

The Truman Administration began a search for an additional secure site for the President and his advisors. The site needed to be within easy reach of the White House, yet far enough away to miss the effects of a direct hit on Washington, D.C. The NMCC's twin brother, the Alternate National Military Command Center, in Raven Rock, Pennsylvania, became operational in 1953 and consisted of five chambers with three steel buildings inside. It is located eight miles south of Camp David, linked by a buried cable to Raven Rock. The site remained a low-key operation until Eisenhower authorized an Alternate Joint War Room in 1959. Based on recommendations of the Winter and Partridge Studies, the Joint Alternate Command Element began 24-hour operations at Raven Rock in 1961. 83

Cheyenne Mountain

The other mountain command post, run by NORAD in Colorado, began operations in 1966. It covers four and a half acres of excavated granite, housing 500 people in fifteen self-contained steel buildings. The entrance tunnel is 7,000 feet above sea level and stretches 1,400 feet inside. The building complex is cut off from the tunnel by two huge steel blast doors, more than three feet thick and weighing more than twenty-five tons each. They are set in concrete pillars fifty feet apart and can be opened or closed hydraulically in thirty seconds. Behind the doors, steel buildings—connected by walkways—sit on huge steel springs designed to protect the complex from shock waves. There are 1,319 of these springs, each made from 3-inch-diameter steel rods and weighing 1,000 pounds. The whole arrangement is like a massive innerspring mattress. Six diesel engines produce electrical power and a fuel storage reservoir contains enough fuel to keep the complex going for about 30 days. Although considered bombproof at the time of construction, advances in the accuracy and power of nuclear missiles warheads means that this "hardened" facility is vulnerable to a direct hit. 84

Looking Glass

The SAC command post at Offutt Air Force Base, only forty-six feet below ground, was considered "soft." The Air Force considered several alternatives to make it harder, including the construction of a new command center, located some 5,000 feet down. Instead, SAC began its airborne command posts. The idea was to have a flying command bunker permanently aloft to act as a backup if the ground controls were destroyed. Specifically, the airborne posts were to take over the National Command Authority "during the course and after a nuclear exchange." These planes, first called "Looking Glass" because they reflected aloft what the old underground command posts could do below, became the most critical, survivable links in the command chain.

Operations of the flying command posts, converted KC-135s, began in February 1961, with continuous eight-hour airborne alert shifts. The planes had direct communications with the Joint Chiefs of Staff through the Pentagon command post and SAC bomber and missile bases. After the Cuban missile crisis, SAC added additional planes, so that by 1965, there were eight "Looking Glass" planes and a fleet of twenty-three support planes, tankers, and radio relay aircraft.

NEACP

Although a Looking Glass plane was always available to the White House, the Nixon administration authorized a distinct “flying bunker” for the President and his staff. In 1972 the Air Force converted the larger Boeing 747s to command centers, with three becoming operational in 1975. Originally nicknamed the "doomsday plane," the National Emergency Airborne Command Post is the official designation (or "kneecap" a name derived from the acronym. The official code name is “Nightwatch.” With the aid of refueling tankers, the plane can stay airborne for a maximum of 72 hours. NEACP operations are based at Offutt Air Force Base.

NECPA

A U.S. Navy ship was equipped with special communications and battle staff areas and stationed in Chesapeake Bay for use as a National Command Authority relocation spot. NECPA began under the Eisenhower Administration and was deactivated in 1970.

SAC HQ in Popular Thought

SAC Headquarters — especially the underground command center — was symbolic as well as functional. Hollywood made four widely popular movies with SAC and Curtis LeMay. In 1954 Strategic Air Command, with actor James Stewart, showcased the B-36 and the B-47. Stewart, an Air Force Reserve officer, proved to be the perfect star for a movie that praised SAC’s dedication to constant vigilance. In 1962 A Gathering of Eagles, starring actor Rock Hudson, depicted SAC alerts, using the alert facilities at Beale Air Force Base in Northern California. It proved less successful at the box office.

Two movies, made in the early 1960s, fixed the image of SAC’s Command Center in the public mind. In Fail-Safe, the coincidental failure of several computer systems leads to a nuclear attack on Moscow. The book and movie portray the SAC Command staff in a favorable light. However, in 1964, director Stanley Kubrick made Dr. Strangelove, based on a SAC-gone-awry portrait in a

British novel titled *Red Alert* (of 1958). The fictional SAC Commander, Buck Turgidson, (played by George C. Scott), advises the President on an attack, “I'm not saying we won't get our hair mussed. Ten, twenty million, tops, depending on the breaks.”

In 1991 Tom Clancy’s *The Sum of All Fears* set several scenes in the second underground command center at Offutt Air Force Base. He wrote that the underground command center was “...a capacious room, local wags joked that it had been built because Hollywood’s rendition of such rooms was better than the one SAC had originally built for itself, and the Air Force had decided to alter its reality to fit a fictional image.”

Conclusion

One writer, recounting the boyhood influence of the Strategic Air Command, related a poignant incident: “‘Dad,’ my nine-year-old son asked me not long ago, ‘what was the Soviet Union?’” As the Cold War fades into the history books, the Strategic Air Command Headquarters stands as a visible reminder. The structure projected a powerful image that signaled to the Soviet Union that nuclear war was an unthinkable option — in effect, making the capabilities of the building itself a part of the policy of deterrence. To the American people, SAC Headquarters provided a visible symbol that the country had “a watchman on the walls.”

89 Tom Clancy, *The Sum of All Fears* (New York: G. P. Putnam’s Sons, 1991), 626. Clancy also makes a humorous reference to the fact that the staff watched the Super Bowl on one of the large-screen monitors — a fact confirmed during conversations during a tour of the headquarters. During a tour of the Command Center, I two staff members told me that the staff watched *Dr. Strangelove* on the large screens.

90 Phil Patton, “Dr. Strangelove’s Children,” *American Heritage* 49, (November 1998), 101. Also, see *Cold War Infrastructure for Air Defense: The Fighter and Command Missions*, 14. The writer concludes, “SAC’s infrastructure was symbolic as well as functional. Unlike ADC or TAC, SAC also told the world about itself.”
Table 3: Strategic Air Command Manning

<table>
<thead>
<tr>
<th>YEAR</th>
<th>OFFICERS</th>
<th>AIRMEN</th>
<th>CIVILIANS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946</td>
<td>4,319</td>
<td>27,871</td>
<td>4,907</td>
<td>37,092</td>
</tr>
<tr>
<td>1947</td>
<td>5,175</td>
<td>39,307</td>
<td>5,107</td>
<td>49,589</td>
</tr>
<tr>
<td>1948</td>
<td>5,562</td>
<td>40,038</td>
<td>6,365</td>
<td>51,965</td>
</tr>
<tr>
<td>1949</td>
<td>10,050</td>
<td>53,460</td>
<td>7,980</td>
<td>71,490</td>
</tr>
<tr>
<td>1950</td>
<td>10,600</td>
<td>66,600</td>
<td>8,273</td>
<td>85,473</td>
</tr>
<tr>
<td>1951</td>
<td>19,747</td>
<td>113,224</td>
<td>11,554</td>
<td>144,525</td>
</tr>
<tr>
<td>1952</td>
<td>20,282</td>
<td>138,782</td>
<td>12,156</td>
<td>166,621</td>
</tr>
<tr>
<td>1953</td>
<td>19,944</td>
<td>138,782</td>
<td>12,156</td>
<td>170,982</td>
</tr>
<tr>
<td>1954</td>
<td>23,447</td>
<td>151,466</td>
<td>14,193</td>
<td>189,106</td>
</tr>
<tr>
<td>1955</td>
<td>26,180</td>
<td>151,595</td>
<td>18,222</td>
<td>195,997</td>
</tr>
<tr>
<td>1956</td>
<td>27,872</td>
<td>169,170</td>
<td>20,238</td>
<td>217,279</td>
</tr>
<tr>
<td>1957</td>
<td>29,946</td>
<td>174,030</td>
<td>20,238</td>
<td>224,014</td>
</tr>
<tr>
<td>1958</td>
<td>34,112</td>
<td>199,562</td>
<td>25,029</td>
<td>258,703</td>
</tr>
<tr>
<td>1959</td>
<td>36,435</td>
<td>199,970</td>
<td>26,204</td>
<td>262,609</td>
</tr>
<tr>
<td>1960</td>
<td>37,362</td>
<td>202,507</td>
<td>26,719</td>
<td>266,788</td>
</tr>
<tr>
<td>1961</td>
<td>37,555</td>
<td>216,148</td>
<td>26,879</td>
<td>280,532</td>
</tr>
<tr>
<td>1962</td>
<td>38,542</td>
<td>217,650</td>
<td>26,531</td>
<td>282,723</td>
</tr>
<tr>
<td>1963</td>
<td>36,206</td>
<td>211,482</td>
<td>23,984</td>
<td>261,672</td>
</tr>
<tr>
<td>1964</td>
<td>35,035</td>
<td>201,933</td>
<td>22,903</td>
<td>256,871</td>
</tr>
<tr>
<td>1965</td>
<td>30,336</td>
<td>164,414</td>
<td>21,931</td>
<td>216,681</td>
</tr>
<tr>
<td>1966</td>
<td>26,558</td>
<td>147,197</td>
<td>23,102</td>
<td>196,887</td>
</tr>
<tr>
<td>1967</td>
<td>25,745</td>
<td>143,412</td>
<td>22,148</td>
<td>191,305</td>
</tr>
<tr>
<td>1968</td>
<td>24,323</td>
<td>124,221</td>
<td>19,956</td>
<td>168,500</td>
</tr>
<tr>
<td>1969</td>
<td>23,167</td>
<td>122,828</td>
<td>18,333</td>
<td>164,328</td>
</tr>
<tr>
<td>1970</td>
<td>23,244</td>
<td>112,401</td>
<td>18,722</td>
<td>154,367</td>
</tr>
<tr>
<td>1971</td>
<td>23,043</td>
<td>118,300</td>
<td>19,732</td>
<td>161,075</td>
</tr>
<tr>
<td>1972</td>
<td>24,040</td>
<td>119,777</td>
<td>18,884</td>
<td>162,703</td>
</tr>
<tr>
<td>1973</td>
<td>23,686</td>
<td>121,060</td>
<td>19,008</td>
<td>163,754</td>
</tr>
<tr>
<td>1974</td>
<td>22,873</td>
<td>109,777</td>
<td>19,670</td>
<td>152,321</td>
</tr>
<tr>
<td>1975</td>
<td>21,788</td>
<td>98,890</td>
<td>20,057</td>
<td>140,735</td>
</tr>
<tr>
<td>1976</td>
<td>19,662</td>
<td>91,722</td>
<td>16,175</td>
<td>127,599</td>
</tr>
<tr>
<td>1977</td>
<td>18,726</td>
<td>89,440</td>
<td>14,876</td>
<td>123,042</td>
</tr>
<tr>
<td>1978</td>
<td>18,177</td>
<td>90,625</td>
<td>13,698</td>
<td>122,500</td>
</tr>
<tr>
<td>1979</td>
<td>18,451</td>
<td>86,315</td>
<td>14,201</td>
<td>118,967</td>
</tr>
<tr>
<td>1980</td>
<td>18,575</td>
<td>85,401</td>
<td>14,217</td>
<td>118,199</td>
</tr>
<tr>
<td>1981</td>
<td>18,708</td>
<td>87,055</td>
<td>13,036</td>
<td>118,799</td>
</tr>
<tr>
<td>1982</td>
<td>18,764</td>
<td>89,918</td>
<td>15,105</td>
<td>123,784</td>
</tr>
<tr>
<td>1983</td>
<td>17,767</td>
<td>89,267</td>
<td>13,009</td>
<td>120,043</td>
</tr>
<tr>
<td>1984</td>
<td>17,165</td>
<td>88,548</td>
<td>12,861</td>
<td>118,544</td>
</tr>
<tr>
<td>1985</td>
<td>17,475</td>
<td>88,341</td>
<td>13,160</td>
<td>118,976</td>
</tr>
<tr>
<td>1986</td>
<td>17,681</td>
<td>91,111</td>
<td>12,938</td>
<td>121,730</td>
</tr>
<tr>
<td>1987</td>
<td>17,453</td>
<td>90,320</td>
<td>12,816</td>
<td>120,679</td>
</tr>
<tr>
<td>1988</td>
<td>17,319</td>
<td>88,045</td>
<td>12,179</td>
<td>117,543</td>
</tr>
<tr>
<td>1989</td>
<td>16,788</td>
<td>85,418</td>
<td>12,574</td>
<td>113,780</td>
</tr>
<tr>
<td>1990</td>
<td>16,688</td>
<td>82,407</td>
<td>12,272</td>
<td>111,367</td>
</tr>
<tr>
<td>1991</td>
<td>16,066</td>
<td>76,523</td>
<td>11,138</td>
<td>103,727</td>
</tr>
</tbody>
</table>
Table 4: Tactical Weapons Systems 1946-1991 (as of 31 December)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>FIGHTERS</th>
<th>BOMBERS</th>
<th>TANKERS</th>
<th>RECON</th>
<th>PACCS</th>
<th>ICBM</th>
<th>MISSILES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946</td>
<td>85</td>
<td>148</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>264</td>
</tr>
<tr>
<td>1947</td>
<td>350</td>
<td>319</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>704</td>
</tr>
<tr>
<td>1948</td>
<td>212</td>
<td>556</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>822</td>
</tr>
<tr>
<td>1949</td>
<td>161</td>
<td>525</td>
<td>67</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>833</td>
</tr>
<tr>
<td>1950</td>
<td>167</td>
<td>520</td>
<td>126</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td>925</td>
</tr>
<tr>
<td>1951</td>
<td>96</td>
<td>669</td>
<td>208</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td>1,146</td>
</tr>
<tr>
<td>1952</td>
<td>230</td>
<td>857</td>
<td>318</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td>1,598</td>
</tr>
<tr>
<td>1953</td>
<td>235</td>
<td>762</td>
<td>502</td>
<td>282</td>
<td></td>
<td></td>
<td></td>
<td>1,781</td>
</tr>
<tr>
<td>1954</td>
<td>411</td>
<td>1,082</td>
<td>683</td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td>2,586</td>
</tr>
<tr>
<td>1955</td>
<td>554</td>
<td>1,309</td>
<td>761</td>
<td>448</td>
<td></td>
<td></td>
<td></td>
<td>3,072</td>
</tr>
<tr>
<td>1956</td>
<td>366</td>
<td>1,650</td>
<td>824</td>
<td>574</td>
<td></td>
<td></td>
<td></td>
<td>3,414</td>
</tr>
<tr>
<td>1957</td>
<td>1,655</td>
<td>766</td>
<td>388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,809</td>
</tr>
<tr>
<td>1958</td>
<td>1,769</td>
<td>962</td>
<td>218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,949</td>
</tr>
<tr>
<td>1959</td>
<td>1,854</td>
<td>1,067</td>
<td>205</td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td>3,133</td>
</tr>
<tr>
<td>1960</td>
<td>1,735</td>
<td>1,094</td>
<td>139</td>
<td></td>
<td>12</td>
<td>147</td>
<td></td>
<td>3,127</td>
</tr>
<tr>
<td>1961</td>
<td>1,526</td>
<td>1,095</td>
<td>164</td>
<td></td>
<td>63</td>
<td>627</td>
<td></td>
<td>3,475</td>
</tr>
<tr>
<td>1962</td>
<td>1,595</td>
<td>1,018</td>
<td>65</td>
<td>5</td>
<td>224</td>
<td>983</td>
<td></td>
<td>3,890</td>
</tr>
<tr>
<td>1963</td>
<td>1,335</td>
<td>895</td>
<td>60</td>
<td>41</td>
<td>631</td>
<td>1,085</td>
<td></td>
<td>4,047</td>
</tr>
<tr>
<td>1964</td>
<td>1,111</td>
<td>844</td>
<td>40</td>
<td>47</td>
<td>931</td>
<td>1,043</td>
<td></td>
<td>4,016</td>
</tr>
<tr>
<td>1965</td>
<td>807</td>
<td>807</td>
<td>32</td>
<td>23</td>
<td>880</td>
<td>1,007</td>
<td></td>
<td>3,339</td>
</tr>
<tr>
<td>1966</td>
<td>674</td>
<td>636</td>
<td>40</td>
<td>26</td>
<td>968</td>
<td>1,005</td>
<td></td>
<td>3,349</td>
</tr>
<tr>
<td>1967</td>
<td>669</td>
<td>641</td>
<td>48</td>
<td>17</td>
<td>1,036</td>
<td>925</td>
<td></td>
<td>3,336</td>
</tr>
<tr>
<td>1968</td>
<td>655</td>
<td>632</td>
<td>53</td>
<td>20</td>
<td>1,026</td>
<td>757</td>
<td></td>
<td>3,143</td>
</tr>
<tr>
<td>1969</td>
<td>549</td>
<td>629</td>
<td>55</td>
<td>18</td>
<td>1,065</td>
<td>779</td>
<td></td>
<td>3,095</td>
</tr>
<tr>
<td>1970</td>
<td>501</td>
<td>630</td>
<td>49</td>
<td>28</td>
<td>1,039</td>
<td>553</td>
<td></td>
<td>3,022</td>
</tr>
<tr>
<td>1971</td>
<td>478</td>
<td>622</td>
<td>40</td>
<td>26</td>
<td>1,048</td>
<td>715</td>
<td></td>
<td>2,984</td>
</tr>
<tr>
<td>1972</td>
<td>462</td>
<td>616</td>
<td>42</td>
<td>27</td>
<td>1,012</td>
<td>982</td>
<td></td>
<td>3,141</td>
</tr>
<tr>
<td>1973</td>
<td>491</td>
<td>641</td>
<td>43</td>
<td>29</td>
<td>1,027</td>
<td>1,397</td>
<td></td>
<td>3,628</td>
</tr>
<tr>
<td>1974</td>
<td>494</td>
<td>643</td>
<td>54</td>
<td>28</td>
<td>1,056</td>
<td>1,891</td>
<td></td>
<td>4,166</td>
</tr>
<tr>
<td>1975</td>
<td>489</td>
<td>642</td>
<td>50</td>
<td>31</td>
<td>1,067</td>
<td>2,114</td>
<td></td>
<td>4,393</td>
</tr>
<tr>
<td>1976</td>
<td>487</td>
<td>643</td>
<td>51</td>
<td>31</td>
<td>1,152</td>
<td>2,074</td>
<td></td>
<td>4,438</td>
</tr>
<tr>
<td>1977</td>
<td>483</td>
<td>640</td>
<td>50</td>
<td>30</td>
<td>1,219</td>
<td>2,018</td>
<td></td>
<td>4,440</td>
</tr>
<tr>
<td>1978</td>
<td>410</td>
<td>640</td>
<td>46</td>
<td>30</td>
<td>1,237</td>
<td>1,408</td>
<td></td>
<td>3,771</td>
</tr>
<tr>
<td>1979</td>
<td>408</td>
<td>642</td>
<td>41</td>
<td>30</td>
<td>1,227</td>
<td>1,396</td>
<td></td>
<td>3,744</td>
</tr>
<tr>
<td>1980</td>
<td>406</td>
<td>517</td>
<td>38</td>
<td>31</td>
<td>1,223</td>
<td>1,383</td>
<td></td>
<td>3,598</td>
</tr>
<tr>
<td>1981</td>
<td>406</td>
<td>523</td>
<td>38</td>
<td>31</td>
<td>1,220</td>
<td>1,388</td>
<td></td>
<td>3,606</td>
</tr>
<tr>
<td>1982</td>
<td>362</td>
<td>562</td>
<td>43</td>
<td>30</td>
<td>1,206</td>
<td>1,620</td>
<td></td>
<td>3,823</td>
</tr>
<tr>
<td>1983</td>
<td>323</td>
<td>535</td>
<td>49</td>
<td>30</td>
<td>1,192</td>
<td>2,063</td>
<td></td>
<td>4,192</td>
</tr>
<tr>
<td>1984</td>
<td>322</td>
<td>543</td>
<td>47</td>
<td>32</td>
<td>1,171</td>
<td>2,518</td>
<td></td>
<td>4,633</td>
</tr>
<tr>
<td>1985</td>
<td>221</td>
<td>673</td>
<td>55</td>
<td>31</td>
<td>1,161</td>
<td>2,580</td>
<td></td>
<td>4,821</td>
</tr>
<tr>
<td>1986</td>
<td>286</td>
<td>556</td>
<td>59</td>
<td>31</td>
<td>1,149</td>
<td>2,568</td>
<td></td>
<td>4,649</td>
</tr>
<tr>
<td>1987</td>
<td>306</td>
<td>550</td>
<td>60</td>
<td>31</td>
<td>1,179</td>
<td>2,529</td>
<td></td>
<td>4,655</td>
</tr>
<tr>
<td>1988</td>
<td>411</td>
<td>548</td>
<td>66</td>
<td>31</td>
<td>1,201</td>
<td>2,638</td>
<td></td>
<td>4,895</td>
</tr>
<tr>
<td>1989</td>
<td>400</td>
<td>543</td>
<td>68</td>
<td>31</td>
<td>1,202</td>
<td>2,620</td>
<td></td>
<td>4,866</td>
</tr>
<tr>
<td>1990</td>
<td>346</td>
<td>530</td>
<td>49</td>
<td>31</td>
<td>1,149</td>
<td>2,515</td>
<td></td>
<td>4,617</td>
</tr>
<tr>
<td>1991</td>
<td>272</td>
<td>656</td>
<td>54</td>
<td>28</td>
<td>1,094</td>
<td>2,515</td>
<td></td>
<td>4,619</td>
</tr>
</tbody>
</table>
Illustration 1: Site Plan, SAC HQ
Illustration 2: Offutt Air Force Base Adjacent to SAC HQ
Bibliography

Anderton, David A. Strategic Air Command: Two-thirds of the Triad. London: Allan, 1975

“Rooms Offered Staff of SAC.” 18 September 1948. File: SAC Buildings.

Schroeder, Jerome and Guy Winstead. 55th SRW History, 5 March 1976.

Periodicals and Newspapers

The Air Pulse, (Bellevue, NE) 1957-1989.

Aviation Week.

Combat Command. (Montgomery, Alabama).

Flying.

Omaha World-Herald.

Vertical Files located at the Omaha Public Library

Strategic Air Command, 1954 - 1969. Vertical Files located at Omaha Public Library, Omaha, Nebraska.

Strategic Air Command, 1970 -1979. Vertical Files located at Omaha Public Library, Omaha, Nebraska.

Strategic Air Command, 1980 - 1981. Vertical Files located at Omaha Public Library, Omaha, Nebraska.

Strategic Air Command, 1982 -1983. Vertical Files located at Omaha Public Library, Omaha, Nebraska.

Strategic Air Command, 1984 - 1985. Vertical Files located at Omaha Public Library, Omaha, Nebraska.

Strategic Air Command, 1986 - 1987. Vertical Files located at Omaha Public Library, Omaha, Nebraska.
ADDENDUM TO:
OFFUTT AIR FORCE BASE, STRATEGIC AIR COMMAND
HEADQUARTERS & COMMAND CENTER, HEADQUARTERS
BUILDING
901 SAC Boulevard
Bellevue
Sarpy County
Nebraska

REDUCED COPIES OF MEASURED DRAWINGS

HISTORIC AMERICAN ENGINEERING RECORD
National Park Service
U.S. Department of the Interior
1849 C Street NW
Washington, DC 20240-0001