ROHDE&SCHWARZ

Measuring Instruments
and Systems Division

Manual

R&S BASIC Interpreter

Version 2.2

Printed in the Federal
Republic of Germany

376.1546.32-02 - 1

http:376.1546.32

095.1000 BI.0- 0796

-

Certitied Quality System

SO 200]1

DQS REG. NO 1954-04

Qualititszertifikat

Sehr geehrter Kunde,

Sie haben sich fur den Kauf eines
Rohde & Schwarz-Produktes ent-
schieden. Hiermit erhalten Sie ein
nach modernsten Fertigungsme-
thoden hergestelltes Produkt. Es
wurde nach den Regeln unseres
Qualitatsmanagementsystems
entwickelt, gefertigt und geprift.
Das Rohde & Schwarz-Qualitéts-
managementsystem ist nach 1SO
9001 zertifiziert.

Certificate of quality

Dear Customer,

You have decided to buy a
Rohde & Schwarz product. You
are thus assured of receiving a
product that is manufactured
using the most modern methods
available. This product was de-
veloped, manufactured and
tested in compliance with our
quality management system stan-
dards.

The Rohde & Schwarz quality
management system is certified

according to I1SO 2001.

ROHDE&SCHWARZ

Certificat de qualité

Cher client,

Vous avez choisi d'acheter un
produit Rohde & Schwarz. Vous
disposez donc d'un produit fabri-
qué d'aprés les méthodes les plus
avancées. Le développement, la
fabrication et les tests respectent
nos normes de gestion qualité.

Le systéme de gestion qualité de
Rohde & Schwarz a été homolo-
gué conformément a la norme

ISO 9001.

&

ROHDE & SCHWARZ

ROHDE & SCHWARZ GmbH & Co. KG

Postfachadresse: Postfach 801469 - D-81614 Miinchen
Hausadresse: MihldorfstraBe 15 - D-81671 Miinchen
Telefon: (MUnchen 089) 4129-0 - International: (4989) 4129-0
Telefax: (MUinchen 089) 4129-21 64

ROHDE & SCHWARZ GmbH & Co. KG
Werk Koln

Graf-Zeppelin-StraBe 18

D-51147 Kéin

Tel. (02203) 49-0
Telefax (02203) 49-229

ROHDE & SCHWARZ GmbH & Co. KG
Werk Teisnach

Kaikenrieder StraBe 27

D-94244 Teisnach

Tel. (099 23) 28-0
Telefax (099 23) 28-174

ROHDE & SCHWARZ MESSGERATEBAU GmbH
RiedbachstraBe 58
D-87700 Memmingen

Tel. (08331) 108-0
Telefax (08331) 108-124

ROHDE & SCHWARZ Engineering and Sales GmbH Tel, (089) 4129-37 11
MdhldorfstraBe 15 Telefax (089) 41 29-37 23
D-81671 Miinchen

R&S BICK Mobilfunk GmbH
Im Landerfeld 7
D-31848 Bad Miinder

Tel, (05042) 998-0
Telefax (050 42) 998-105

ROHDE & SCHWARZ FTK GmbH
WendenschlofistraBe 168, Haus 28
D-12557 Berlin

Tel. (030) 65891-0
Telefax (030) 655502 21

SIT Gesellschaft fur Systeme
der Informationstechnik mbH
WendenschloBstraBe 168, Haus 28

Tel. (030) 658 91-222
Telefax (030) 65880-183

Zweigniederlassungen

Zweigniederlassung Berlin
Ernst-Reuter-Platz 10
D-10587 Berlin

Zweigniederlassung Biro Bonn
Josef-Wirmer-Strafie 1-3
D-53123 Bonn

Zweigniederlassung Dresden
Fritz-Reuter-StraBe 32¢
D-01097 Dresden

Zweigniederlassung Hamburg
Steilshooper Allee 47
D-22309 Hamburg

Zweigniederlassung Karlsruhe
Am Sandfeld 9
D-76149 Karlsruhe

Zweigniederlassung Kéin
Graf-Zeppelin-Strale 18

Subsidiaries in Germany
Tel. (030) 3479 48-0
Telefax (030) 34 79 48-48

Tel. (0228) 91890-0
Telefax (02 28) 2550 87

Tel. (0351) 44592-0
Telefax (0351) 44592-15

Tel. (0 40) 63 2900-0
Telefax (040) 6307870

Tel. (0721) 97821-0
Telefax (07 21) 978 21-41

Tel. (02203) 807-0
Telefax (022 03) 807-50

D-51147 Kéin

Zweigniederlassung Miinchen
MdhidorfstraBe 15
D-81671 Miinchen

Tel. (089) 418695-0
Telefax (089) 4047 64

Zweigniederlassung Neu-lsenburg
Siemensstraf3e 20
D-63263 Neu-Isenburg

Tel. (06102) 2007-0
Telefax (06102) 800040

Zweigniederlassung Telekommunikation
SiemensstraBe 20
D-63263 Neu-isenburg

Tel. (06102) 2007-0
Telefax (06102) 2007-12

Zweigniederlassung Nirnberg
DonaustraBe 36
D-90451 Niirnberg

Tel. (09 11) 64203-0
Telefax (09 11) 64203-33

D-12557 Berlin .
R &S International Telephone
Telefax
E-mail
Argentina Precisién Electrénica SRL (1) 3944815 Chile DYMEQ Ltda. (2) 2775050
Esmeralda 582, Piso 4, Off. 11 (1) 3272332 Avenida Larrain 6666 (2) 2278775
1007 Buenos Aires Santiago
Australia ROHDE & SCHWARZ (Australia) Pty. Ltd. 2) 97480155 " !
63 Parramatta Road ()Py Ezg 97481836 China ROHDE & SCHWARZ Repr. Office (10) 64672365
Silverwater, N.S.W. 2141 Room 821 Beijing Towercrest Plaza (10) 64672315
% No. 3 Mai Zi Dian West Road
[Chao Yang District
Austria ROHDE& SCHWARZ OSTERREICH Ges.m.b.H. (1) 6026141 Beijing 100016
Sonnleithnergasse 20 (1) 6026141-14
A-1100 Wien
Czech ROHDE & SCHWARZ (2) 24322014
Azerbaijan ROHDE & SCHWARZ Representative Office (412)933138 Republic Praha, s.r.o. (2) 24317043
Azerbaijan avenue 35 (412) 930314 Pod kastany 3
370139 Baku CZ-16000 Praha 6
Bangladesh Business International Ltd. (2) 839046 D
; enmark ROHDE & SCHWARZ DANMARK A/S (43) 436699
6?1%-2ew Bailey Rd., PO.B. 727 (2) 833520 Ejby Industrivej 40 (43) 437744
DK-2600 Glostrup
Belgium ROHDE & SCHWARZ BELGIUM N.V. (2) 7215002
Excelsiorlaan 31 Bus 1 : (2) 7250936 Ecuador Digitec Ltd. (2) 430373
B-1930 Zaventem isabel.Veiro/RSB%RSB@rsd.de El Heraldo 121 y El Dia (2) 443782
Quito
Brazil ROHDE & SCHWARZ (11) 55052177
Precisao Eletronica Ltda. (11) 55055793
Rua Geraldo Flausino Gomes, 42-1° and. Finland Orbis Oy (9) 478830
04575-060 Sao Paulo - SP Vanha Kaarelantie 9 (9) 531604
FIN-01610 Vantaa info@orbis.fi
Brunei GKL Equipment Pte. Ltd. 2760626
g Rd. 2760629
AL iy France ROHDE & SCHWARZ FRANCE (0) 141361000
25-27, rue J. Braconnier (0) 141361010
F-92366 Meudon-La-Forét Cédex
Bulgaria ROHDE & SCHWARZ Representation Office (2) 655133
idtj - 2) 656833
e o ROHDE & SCHWARZ FRANCE
Agences régionales:
Canada COM: Rennes (0) 299519700
ROHDE & SCHWARZ CANADA INC. (613) 5928000 Sigma 1 (0) 299419131
555 March Rd. (613) 5928009 rue du Bignon
Kanata, Ontario K2K 2M5 F-35135 Chantepie
T&M: Toulouse (0) 561391069
TEKTRONIX CANADA INC. (416) 747-5000 Technoparc 3 (0) 561399910
785 Arrow Road (416) 747-7581 B.P. 501)
Weston, Ontario MOM2L4 F-31674 Labége Cédex
376.1452.00 3 E-5

http:376.1452.00
mailto:RSB@rsd.de
http:Ges.m.bH

15

1.5.1
1.5.2
1.5.3
1.53.1
1.5.3.2
1.5.4
1.5.4.1
1.5.4.2

1.8
1.8.1

1.8.2
1.8.3

1.9

1.9.1
1.9.2
1.9.3

1.10

376.1452.00

Using the IEC Bus under BASIC

Introduction into the IEC-bus Syntax
Several Controllers on the Bus

Using the Line Message Service Request
The Computer as Controller

The Computer as Talker/Listener
Execution of Parallel and Serial Polls
Serial Poll

Parallel Poll

Incorporation of Assembler Subroutines in BASIC Programs

Procedure for Loading Subroutines

In an integer Matrix within the BASIC Data Segment
With POKE within or outside BASIC

Outside BASIC (with LOAD# and CALL#)

Outside BASIC as Memory-Resident Part of the DOS
Interface between BASIC and Assembler Subroutines
Examples

Using Files and Interfaces

The Graphics System

User and Graphics Coordinates

WINDOW and VIEWPORT Instructions
Graphics Input/Output

Color Graphics Option PCA-B3 (PCA) or VGA-,
EGA Mode (PSA/PAT)

General Hints for Programmers
Memory Allocation in BASIC

Optimum BASIC Speed
Event-controlied Branching

BASIC Device Drivers

Page

1.23

1.23
1.25
1.26
1.26
1.26
1.26
1.27
1.27

1.29

1.29
1.29
1.30
1.30
1.30
1.31
1.32

1.40

1.52

1.56

E-5

http:376.1452.00

2.1

2.2

2.3

4.1

4.1.1
4.1.2
413
4.1.4
4.2

421
422

423
424

4.3

4.4

376.1452.00

BASIC Instruction Set

-Definition of Terms Used

Summary of the BASICInstruction Set

BASIC Instructions in Alphabetical Order

BASIC Error Messages

Applications

Program Transfer PUC— PCA

Similar Instructions

Instructions to be Rewritten

Transfer of the Program from PUC to PCA
Further instructions

Matrix Module MATRIX.BAS

Gaussian Algorithm: X =1
Matrix Inversion: X =2
Matrix Multiplication: X =3
Matrix Division: X=4

Graphic Examples "GPH-PCA.BAS” or "GPH.ASC”

BASIC Compatibility of PSA/PAT Controllers

in Comparison with PCA Controllers

Page

2.1

2.1
23

28

3.1

4.1

4.1

4.2
4.2
43
4.4

45

4.6
4.7
4.8
49

4.10

4.17

http:376.1452.00
http:GPH.ASC-4.10

1 Operating BASIC

1.1 The R&S BASIC Interpreter

The R&S-BASIC is an interpreter, i.e. the program produced by the user with the editor can already be
executed without further compilation or assembling. This has the advantage that written programs
can be immediately tested and edited if required.

BASIC is a computer language used worldwide. However, BASICs from different computer manu-
facturers differ with respect to the instruction syntax and range which means that BASIC programs
must first be rewritten or adapted before they can be used on another computer.

The R&S BASIC used is based on the standard or on widely used BASICs similar to the standard. The
core of BASIC as defined in the ANSI standard is fully implemented in the R&S BASIC. There are
additional graphics and I/0 instructions which are similar in syntax to Microsoft BASIC. The instruction
set also contains special functions such as IEC bus and interface instructions.

Just as any other programming language, the BASIC is first loaded into the main memory before it
can be executed. Loading is carried out either

® by entering the command A >BASIC from the operating system, or

® by writing an AUTOEXEC file (BASIC is then automatically loaded together with the operating
system).

When loading with the operating system, a BASIC program can already be specified and is then
loaded together with the BASIC from the floppy disk or hard disk. This BASIC program is then
automatically started by entering ,R (comma R).

Example :E>basic test.bas,r

As soon as BASIC has been loaded, it registers on the screen with BASIC, outputs the version number
of BASIC and signals with READY that it is ready for further entries. It also labels the softkeys with
commands. A small e behind the softkey labelling indicates that further data can be specified for this
command and that it is only executed if the Return key is pressed. The other commands, e.g. RUN or
CONT, are immediately executed when the softkey or function key is pressed. The softkey for EDIT
mode is located on the left and is described in section 1.3.1.

EDITMODE RUN CONT LiSTe LOAD"e SAVE"e AUTO"e *)
ON /OFF J

Fig. 1-1 Example of softkey labelling

*) for PSA/PAT: ALPH/GRA
for PCA: PRTSCRNv

376.1452.00 1.1 E-6

1.2 Using the Keyboard in BASIC

The keyboard is used in BASIC to enter programs and to control a running program.

All keyboard functions are active in the BASIC editor. These keys can be divided into the following
groups:

® Alphanumeric keys for program input

® Return and enter keys for program modifications

® Cursor keys and the rollkey for cursor movements

® Keys which modify the keyboard function

® Function keys which operate paralle! to the softkeys in the BASIC editor
® Keys which control program execution

® Special controller keys.

1.2.1 Alphanumeric Keys

The alphanumeric keys are used to enter instructions, statements or numbers into the controller. The
alphanumeric keypad also contains a series of special characters which mostly have a special function
in the programs.

Upper-case or lower-case notation?

Entry of a program is considerably facilitated by the fact that the system accepts both upper-case and
lower-case letters as being equivalent and that spaces can be expanded at will or omitted. After
pressing the Enter key, the line is repeated in plain text as understood by BASIC, i.e. all key words are
displayed in upper-case notation, whereas variable names and labels, except for the first letter, are
written in lower-case. Spaces are inserted after key words in order to enhance the readability.

Note: If you are not quite sure about a keyword or the syntax, you should have another close look at

the line when entered. If the system has converted the assumed keyword to lower-case
letters, the controller has mistaken it for a variable or a subroutine call.

376.1452.00 1.2 E-6

p—

http:376.1452.00

1.2.2 Enter Key
The Enter key terminates inputs to the controller
® entered into the running program using INPUT instructions

o following an instruction entry in direct mode. (This instruction is then immediately executed
provided it is permitted in direct mode. An error message is otherwise output in the status line.)

® when editing a line where a line number is present at the beginning.
The line in which the cursor is currently located is transferred to the BASIC program if the Enter key is

pressed during editing. If a line number already exists, the particular line will be deleted and replaced
by the new line. It is unimportant whether the controller is in EDITMODE ON or OFF.

1.2.3 Rollkey
(only for PCA, EZM-B2, FS-K1 and PSA-Z1)

The function of the rollkey during editing is indicated by the LEDs above it. The function is identical
with the corresponding individual cursor movements.

Direction of rotation | without Shift with Shift

'

}

VR
x_ "

With the BASIC editor the horizontal shift cannot proceed beyond the start or end of the line. Vertical
shifts beyond the upper edge of the screen enable up to 39 lines of the screen buffer to be displayed.

The rollkey changes its function with Shift and also with Ctrl. This function can also be read in by a
BASIC program so that three independent, bidirectional ways of entry exist with the rollkey.

376.1452.00 1.3 E-6

http:376.1452.00

1.2.4

Cursor Keys

a) for PCA, EZM-B2 and FS-K1

The cursor function is active if the red LED of the Num Lock key is extinguished or if the cursor key is
pressed together with SHIFT.

Clr

e

Home
Sets the cursor to the top left corner of the
screen without deleting the screen.

Moves the cursor up by one position.

Moves the cursor one position to the left.

It is not possible to move beyond the
leftedge of the screen. The cursor then
remains at the first position of the line.

Moves the cursor one position to the right.

"It is not possible to move beyond the right

edge of the screen.

This key sets the cursor to the bottom left
corner of the screen. The key is not labelled
since there is no standard symbol for the
function.

Moves the ct:*~3r down by one position.
Contrary tc --e LF key, a code which
influences B4<.{ s not transmitted.

This key deletes the complete video memory,
i.e. also characters present in the non-visible
part, and sets the cursor to the top left
corner.

376.1452.00

1.4

Insert

The cursor changes its size when this key is
pressed and indicates that the INSERT mode
is active. In INSERT mode, characters can be
inserted from the keyboard at the posiktion
of the cursor.The characters to the right of
the cursor are then shifted to the right. No
further insertions are possible if the end of
the line reaches the right edge of the screen.
The INSERT mode s cancelled by pressing the
key again, by pressing Del or a cursor key.
The cursor is then of normal size again.

Delete

This key deletes the character at the cursor
position. The characters in the same line to
the right of the cursor are then shifted by

.one position to the left. it is possibie to

rapidly delete parts of a line by using this key
together with the Repeat key.

Delete

This key in the alphanumeric keypad deletes
the last entry, i.e. the last character before
the cursor.

b) for PSA and PAT

The cursor function is active, if the green LED of the Num | -key is extinguished or if the cursor key is
pressed together with the Shift key.

A

Ende

=

Sets the curswor to the top left corner of
the screen without deleting the screen.

Moves the cursor up by one position.

Moves the cursor one position to the left.
It is not possible to move beyond the left
edge of the screen. The cursor then
remains at the first position of the line.

Moves the cursor one position to the
right.

Itis not possible to move beyond the right
edge of the screen.

Sets the cursor to the bottom left corner
of the screen.

Moves the cursor down by one position.
Contrary to the LF key, a code which
influences BASIC is not transmitted.

376.1452.00

0
Einfg

1.5

Einflgen

The cursor changes its size when this key
is pressed and indicates that the EINFUGE
mode s active. In EINFUGE mode,
characters can be inserted from the key-
board at the position of the cursor. The
characters to the right of the cursor are
then shifted to the right. No further
insertions are possible if the end of the
line reaches the right edge of the screen.
The Einfige mode s cancelled by pressing
the key again, by pressing Del or a cursor
key. The cursor is then of normal size
again.

This key deletes e cnaracte- at the
cursor positton. The characters :n the
same line to the right of the cursor are
then shifted to the left. it is possible to
rapidly delete parts of a line by using this
key together with the Repeat key.

" This key in the alphanumeric keypad

deletes the last entry, re. the last
character before the cursor.

E-6

http:376.1452.00

1.2.5 Keys Changing the Keyboard Code

These keys cannot be read by the controller but they change the transmitted code of other keys.

a) for PCA, EZM-B2 and FS-K1

376.1452.00

The two Shift keys are identical.
They change the function of most keys on
the keyboard.

Upper-case letters are automatically
selected on power-up or if the red LED on
the key 1s lit. Lower-case letters are
selected in conjunction with Shift. The
LED is extinguished by pressing the
Alpha-Lock key and lower-case letters are
then active. Upper-case letters are then
selected with Shift.

The input of BASIC programs may be in
upper case or lower case. Lower-case
letters are e.g. used in strings and texts.
The Alpha-Lock key only affects the
letters Ato Z.

Cursor movements and editing
commands can be entered using the key-
pad after power-up or if the red LED does
not light up. The numbers can then be
entered using Shift. Numbers can be
entered by pressing the Num Lock key
and the cursor movements can then be
made together with the Shift key.

This key generates a control character
with a code between 0 and 31 (decimai)
as specified in the standards, if pressed
together with another key of the
alphanumeric keypad (A-Z @ ~, . / -).
These control functions are either
immediately executed or displayed on the
PCA screen with a special character. The
control function is not affected, if the
Shift key 1s pressed at the same time.

This key repeats another key pressed at
the same time approx. 60 times per
second. It is used for fast cursor
movements or repeated entry of a
character.

b) for PSA and PAT

The two Shift keys are identical.
They change the function of most keys on
the keyboard

Upper-case letters are automatically
selected on power-up or if the green LED
1s lit. Lower-case letters are selected in
conjunction with Shift. The LED s
extinguished by pressing the Aipha-Lock
key and lower-case letters are then active.
Upper-case letters are then selected witn
Shift,

The 1nput of BASIC programs may be in
upper case or lower case. Lower-case
letters are e.g. used 'n strings and texts.
The Alpna-Lock key oniy affects the
ietters Ato Z.

Cursor movements and editing
commands can be entered using the
keypad after power-up or if the red LED
does not light up. The numbers can then
be entered using Shift. Numbers can be
entered by pressing the Num Lock key
and the cursor movements can then be
made together with the Shift key.

This key generates a control character
with a code between 0 and 31 (dec:mal)
as specified tn the standards, if pressed
together with another key of the
alphanumeric keypad (A-Z @ ~, . / -)
These control functions are either
immediately executed or displayed on the
PCA screen with a special character. The
control function is not affected, if the
Shift key 1s pressed at the same time.

E-6

1.2.6

Function Keys

The function keys F1 to F8 trigger the same editing functions as the softkeys at the bottom of the
screen. The associated text at the bottom of the screen is entered into the BASIC program just as if the
text had been entered via the keyboard. The command is executed immediately if the text does not
have a small e (extension); the text is written on the screen if there is an e. It can then be executed by
pressing the Return key or extended by entering a statement such as LIST 100-200.

a) For PCA, EZM-B2 and FS-K1

376.1452.00

EDIT-Mode

insert Line

This key shifts the line with the cursor and
all subsequent lines downward by one
line; the last line on the screen s lost. This
does not mean that the last line s no
longer present in the program. This key
can therefore be used to create space for
the purpose of sending commands to the
interpreter or editing a new line.

Delete Line

This key deletes the line with the cursor.
The subsequent lines are shifted upward,
and a blank line is entered into the last
line.

1.7

b) For PSA and PAT

EDIT-Mode

This key switches between the
alphanumeric and the graphics mode,
rndependent of the labelling.

insertLine

This key shifts the line with the cursor and
all subsequent lines downward by one
line; the last line on the screen is lost This
does not mean that the last line 1s no
longer present in the program. This key
can therefore be used to create space for
the purpose of sending commands to the
interpreter or editing a new line.

Delete Line

This key deletes the line with the cursor
The subsequent lines are shifted upward,
and a blank line is entered into the last
line.

E-6

1.2.7 Keys Controlling the Program Run

A running BASIC program can be accessed using these keys. Providing an INPUT or INKEY instruction
is not present in the program, all other keys are ignored by the program and stored in a keyboard
input buffer which has a capacity for 16 characters. These characters are output at the end of the
program or upon a stop.

a) For PCA, EZM-B2 and FS-K1 b)For PSA and PAT

1.2.8

A running BASIC program can be aborted
using this key. Such an abort s only
possible at the end of an instruction, since
BASIC permits to read in variables, edit
the program or continue the program run
(CONT) following Break.The controller
then indicates the line in which the
program was aborted

Contro! S can be used to stop outputs on
the screen or printer, e.g. in order to
examine them more closely. The program
1s continued when pressed a second time.

Using Control P, screen outputs can be
simultaneously printed out on a printer.

Special Key

Untbr

A running BASIC program can be aborted
using this key Such an abort is only
possible at the end of an instruction, since
BASIC permits to read in variables, edit
the program or continue the program run
(CONT) following Break.The controlier
then indicates the line in which the
program was aborted.

Strg S can be used to stop outputs on the
screen or printer, e.g. \n order to examine
them more closely. The program s con-
tinued when pressed a second time.

Using Strg P, screen outputs can be
simultaneously printed out on a orinter

This special key is mainly used to enter strings with control functions.

1.2.9

Escape

The Esc key does not immediately trigger functions with the BASIC which means that it is possible
to incorporate the Esc function into the program. Esc 1s absolutely essential when programming
ANSI control functions as encountered e.g. with printers and piotters as well as in the softkey
labelling of the PCA. The character Ec s output on the screen when the Esc key is pressed.

Using the Keyboard in a BASIC Program Run

In the BASIC program, all keys except the Break key can be read into the controlier in one string using «
INKEY. Several codes are assigned to each key depending on the position of Shift, Ctrl, Alpha Lock
and Num Lock and can be determined from the string using ASC(A$). The key code is then in decimal
notation. A list of all key codes and their combinations in hexadecimal can be found in the Operating
Manual of the controller.

The softkeys can also be read in using the INKEY instruction. Their function is independent of the

keyboard. They occupy the codes AOH to A7H (hexadecimal), 160 to 167 (decimal)] where AOH is the
softkey on the extreme right.

376.1452.00 1.8

http:376.1452.00

-

The rolikey has the following code assignment:
(decimal value in brackets)

Direction of rotation
Backwards Forwards
Without Shift EA (234) EB(235)
With Shift CA(202) CB(203)
With Ctrl 8A (138) 88 (139)
Note: Pressing a key on the keyboard always triggers an interrupt in the controller. If the

statement ON KEY GOSUB n has been entered in the program before, a branch is made to
the subroutine when the key is pressed, where the key code can then be processed
further.

1.3 BASIC Editor

For the programming language BASIC, the capability of the editor is a vital factor in determining the
development time of a software project. BASIC is a highly suitable interpreter for intermediate tests
on incomplete software where rapid location and modification of instructions is particularly impor-
tant.

The system has an extremely powerful video editor in which the usual disadvantages such as error
messages in the listing, no backward scroll, transfer of unwanted lines into the program, string input
mode etc. are avoided. :

A screen editor is based on the device driver STRINX.SYS, which must be loaded with the file
CONFIG.SYS for BASIC.

1.3.1 EDIT Mode

One of the exceptional features of the BASIC editor is the EDIT mode. In contrast to normal video
editors which are always active except when the program is running, the EDIT mode permanently
writes those lines which the user wishes to edit. In order to change or supplement several lines, the
softkey EDIT mode on the left margin of the screen should always be used. EDIT mode is then
indicated by ON and is switched off by pressing the softkey again or by RUN.

In addition to striking the softkey, a line number is required at the left edge of the screen in order to
start the EDIT mode. This line number is either entered from the keyboard or generated by pressing
the LIST softkey with a line number.

Once the EDIT mode has traced a line number in the program, it continuously builds up the previous
or following line number using vertical cursor movements with-the rollkey or the cursor keys.

376.1452.00 1.9 E-6

http:376.1452.00

Guidelines for particularly effective editing in the EDIT mode:

® In order to enter the line to be listed, it is sufficient to enter the approximate line number at the
left edge of the screen. The line number range can then be displayed by vertical cursor move-
ments using the rollkey or cursor keys.

® Line numbers can be written to the left edge of the screen irrespective of the text on the screen.
Vertical cursor movements then display the new line number range on the screen. EDIT mode is

then continued with this line number. A return to the old line number range can be made using
Ror«.

Caution! By pressing the Return key, the new line is transferred into the BASIC program memory.

® Alineis duplicated by assigning it a new line number and by pressing the Return key.
® Cursor movements outside the line range of the listing produce empty lines.
® Empty lines for inserting program lines can be produced using F9 (INSERT LINE). Lines can also be
inserted by overwriting a line with a new line number and new contents and then pressing the
Return key.
® Far-off line numbers can be reached in different ways:
with Shift and rollkey
with Rept and cursor \
by entering a new line number and moving the cursor

by F9 (INSERT LINE) and entering a new line number and then moving the cursor.

® The complete alphanumeric screen can be cleared using the Clr (Stgr) key. A new line number
must then be entered again and the cursor moved in order to produce a line number range.

® In order to test the program, simply press the RUN softkey. The LIST mode is then automatically

switched off in order to be able to bring the last 30 lines back to the screen at the end or in the
event of an interruption.

1.3.2 Using the ANSI Function under BASIC

The system possesses an internationally standardized software interface based on the ANSI standard
X 3.41-1974 for addressing the screen and for cursor movements.

All functions required to operate a terminal are defined in this standard. These functions constitute
the interface between BASIC and the screen output of ASCH characters.

The ANSI functions are called in BASIC using PRINT instructions. All functions start with ESC which is
entered using the corresponding key on the keyboard and is displayed on the screen.

376.1452.00 1.10 E-6

The following function groups are supported:

Cursor control

Labelling the status lines and softkeys
Clearing the screen

Setting the video attributes

Output of display on printer

The parameters of the ESC sequences Py , P, to P, are numbers and can be entered with 1 or 3 digits.

The available screen functions are described in the manual "Operating System for PCA” or in the
manual of the option concerned.

1.3.3 Labelling the Softkeys in the Program Run
The labelling of the softkeys with BASIC commands is usually retained after starting the program. The
labelling can be changed, however, depending on the program function. The labelling in the running
BASIC program has no influence on the code of the softkey read in by the INKEY instruction.
Sequence: ESC R P, TEXT CR LF

Pn: Number of the softkey 1 to 8 (from left to right)

TEXT: Text with up to 8 characters.
Function: The associated softkey is labelled with TEXT according to parameter P,.
Example: Labelling of the 3rd softkey (from the left)

PRINT"Ec R3PROCESS"

Note: The sequence must be terminated by CR, LF.

If the automatic output of CR, LF is to be suppressed after pressing the key, the text must
be terminated with 'e’.

The softkey must be terminated by "v" if the text is not to be output on the screen.

1.3.4 Labelling the Softkeys for Editing

If required, frequently used commands can be labelled on the softkeys for editing purposes. The
command normally labelled on the softkey is then overwritten. This makes the editor even more

effective.

The brightness of the softkey displayed in inverted form can be varied by setting a brightness level
before.

Sequence: ESC R Py TEXT (e) [CR] LF

Pn: Number of the softkey 1to 8

TEXT: Instruction with up to 8 characters (including e)

376.1452.00 .11 E-6

http:376.1452.00

Function: The associated instruction is written on the screen when the softkey is pressed. The PCA
waits for a more detailed specification of the instruction if a small e follows. The instruc-
tion is immediately executed if not followed by a small e.

Example: ? "E.R4RUN 100"

The program is started in line 100 when softkey 4 is pressed.

Note: An incorrect notation or non-executable instructions lead to corresponding error
messages as in the case of a direct input.

The labelling of the softkey on the outer left is not output when pressed.

Note: If the softkey labelling has been deleted in the program run or changed when editing,
the original labelling can be restored by entering the SOFTKEY command.

Example: SOFTKEY

1.3.5 Labelling the Status Lines

The system has a divided screen. The upper 25 lines are shifted, whereas the remaining lines on the
screen remain stationary. These stationary lines can only be used for status information. All five lines
can be labelled with 80 characters each.

Sequence: ESC Q P, TEXT [CR] LF

Pn: Number of status line 1to 5
Text: Text with up to 80 characters

Function: The associated status line is labelled with TEXT according to parameter Pn.
Example: Labelling the first status line
7 "EcQ1 DO NOT PRESS BREAK!"

Note: The second status line is overwritten in the case of error messages. The status line and
the softkey labelling are cleared by ESCly.

The sequence must be terminated by CR, LF.
Example: 7 "e[y"
Note: The attribute of the status lines can be set before labelling.

Example: 7 "£.[92,m";"E.Q5DARK ROW NR.5"

376.1452.00 1.12 E-6

»)

http:376.1452.00

1.3.6 Output of a Hardcopy on the Printer

The contents of the currently displayed ASCIl video memory can be output on a printer connected to
the Centronics interface by pressing the softkey or the function key on the printer. The softkey on the
outer right of the PCA is preset with PRTSCRNv after loading BASIC.

Sequence: ESC R P, PRTSCRNv

Pn: Number of the softkey 1to 8

Function: The contents of the displayed ASCIl video memory are copied via interface LPT1 by
pressing the softkey labelied PRTSCRNv or the associated function key.

Example: ? "E.R4PRTSCRNv"

Pressing the "Druck” key on the PSA and PAT controllers causes the content of the ASCII screen to be
sent to a printer compatible to industrial standard.

In the program run, an ASCI| hardcopy can be produced by outputting "esc[z".

Sequence: ESC[z

Example: 1000 PRINT "Ec[z":

Note: The output is optimized and outputs LF for blank lines. Special characters, e.g. B, cause
the printer connected to act accordingly. A hardcopy of the graphics display is made

-using the instruction COPY OUT or GSAVE for controllers compatible to industrial
standard.

1.4 Processing of Numbers and Variables in BASIC

1.4.1 Constants
Constants are generally decimal numbers between
1.7 x 10308 and 2.2 x 10-308,

Up to 16 places are possible and can be used for calculations. In accordance with the American nota-
tion, the decimal point is used instead of the comma.

Example: 25 ; 90.1234

Constants can also contain exponents to base 10 which are identified by an E.

Example: 2 1 103 ; 140.25 © 10-12

Exponential form: 23 ; 140.25€-12

376.1452.00 1.13 E-6

http:376.1452.00

Since BASIC can process character strings in addition to numbers, string constants can also be used.
Example: “"MEASURED VALUEA,"
String constants are marked by inserting them between quotation marks.

The alphanumeric display of the PSA and PAT controllers can be output on a printer compatible to
industrial standard by pressing the print and the Strg key together.

1.4.2 Variables

The variable names can consist of a sequence of any length made up of letters, digits and the under-
score character in order to arrange a program clearly. The first character must be a letter. When
assigning names, ensure that the variable is not identical with the BASIC keywords since this would
produce an error message.

Examples of permissible names:

100 K = 1

110 K1 = 1

120 Center = K1
130 First-K1 = 100

The following line produces an error message, because the word INPUT has already been reserved for
an instruction: '

150 input = 100 - 100 INPUT =
1 Syntax Error

If it is absolutely necessary to use this variable name, the LET instruction may prove helpful in this
case:

150 let input = 100 -» 150 LET input = 100
(see also 1.2.1 Upper-case or lower-case notation).

1.4.3 Types of Variable

The computer differen.tiates between three different types of variable.

1.4.3.1 Floating-point Variables

The numeric variables may assume all values within the controlier range of * 1.797693134862 E + 308.
Larger numbers produce an OVERFLOW ERROR. The smallest representable number is
+2.225073858507 E-308. Smaller numbers are set to 0. Values within these limits can be assigned to
the floating-point variables. The arithmetic accuracy using floating-point variables is exact to 16
decimal places, 13 of which are output.

Example: A=7

Fd=1.5E6
X1=-0.2187€9

376.1452.00 1.14 E-6

http:376.1452.00

1.4.3.2 Integer Variables

These variables can be assigned integers up to + 32767 and -32768. They are identified by a %
symbol at the end of the name.

Integer variables are represented internally as 16 bit numbers in twos complement form.

Values with a floating point can also be used, but the controller only uses the integral value; the
number is always rounded off.

Example: A%=7
Corws;ant_2%=4528
X0%=0

Numbers within the range 32767 to 65536 are also accepted. For the output, however, a type of
representation has to be chosen, and the numbers are then represented withing the range -1 to
—-32768 in this case.

20 B%=40000

30 B=B%

40 IF SGN(B)=-1 THEN B=65536+B
50 PRINT B%.B

- -25536 40000

Inline 40 of the example, an offset of 65536 is added to t.he value, if it is negative, in order to shift the
number into the range 32767 to 65536.

1.4.3.3 String Variables

The string variables comprise a string with up to 65536 optional characters. They are identified by a §
character at the end of the name. The assigned character string constant is present within quotation
marks which do not belong to the string, however, and are therefore not output e.g. with a PRINT

instruction.

Example: A$="TEXT"
value$="55"
N1§=""

A special feature is the so-called null character string (N1$ in the example) which can consist of no
characters.

Strings can be linked using the “ + ” character.

376.1452.00 1.15 E-6

http:376.1452.00

1.4.4 Internal Representation of Floating-point Variables

BASIC operates with the standard IEEE format with double precision. A floating point variable com-
prises 8 byte or 64 bit, of which 52 are the mantissa, 11 the exponent and 1 the sign.

Byte 7 Byte 6 Byte 5 Byte 4 ks Byte O
| l | | i I I | [|
V EEE EEEE EEEE MMMM MMMM MMMM MMMM MMMM MMMM MMMM
V = Sign
E = Exponent
M = Mantissa

The exponent in the E-field is specified as a two's complement of the basic value 1024.

The mantissa is normalized, i.e. the MSB is always assumed to be "1" and is therefore not explicitly
stored. An effective accuracy of 53 bit is therefore attained. The decimal value of the floating point
variables described above is obtained by multiplying the mantissa by 21 (E-1023). It must be ensured
that the MSB (bit 53) of the mantissa is always 1, i.e. the mantissa value can only be 1.0 = M < 2.0.
The 8 bytes are arranged in the memory in ascending sequence, i.e. the first byte 0 contains the LSB of
the mantissa, the last byte, i.e. byte 7, contains the exponent and sign.

1.4.4.1 Internal Representation of Strings
First, the string identifier is saved. It consists of 4 bytes, the first word indicating the current string

length and the second word its address (offset in data segment). This is the address where the string is
located. A word indicating the maximum length of the string is located two bytes ahead.

1.4.4.2 Indexed Variables, Arrays
The arrays are a further group of variables. All three types of variable already mentioned are
permissible. An index is added to the name of the variable, hence the term indexed variable. The
index is written in brackets.
Example:

As(1)

v !

Variable name Index

The variable name A$ remains the same for all elements in this field. Only the index varies. The index
can also be a numerical expression.

Multi-dimensional fields, i.e. fields with more than one index, can also be produced. These indices are '
separated within the brackets by commas.

376.1452.00 1.16 E-6

http:376.1452.00

Example: Two-dimensional variable:
- A(4,6) , Cx%(8.3) ., String-A$(8,3)
Example: Three-dimensional variable:
X(3.,2.4) , Fa%(4,0,3) , Gx$(3.4,2)

All numbers 2 0, numerical variables or numerical expressions can be used as indices for the variables.
The variables can then also be indirectly addressed.

Example: Indirect addressing: ' ®

100 FOR I=0 TO 2

110 FOR J=0 TO 3

120 FOR K=0 TO 2

130 A(I.J.K)= RND(1)

140 NEXT K: NEXT J: NEXT I

A location for the indexed variable must be reserved using DIM before it can be used. A location
comprises four bytes for a character string (only length and pointer; the character string is located at

- the upper end of the data segment), 2 bytes for an integer constant and 8 bytes for a floating decimal
point variable.

Caution: Free locations are taken up unnecessarily by. fields dimensioned too large.

1.4.6 Rules for Evaluating Expressions

The processing priority for mathematical expressions can be represented in a very simple way. The
functions always have the highest priority after expressions in brackets, followed by the arithmetic
and relational operators and the logical operators.

The priority is as follows: .

Mathematical operators Highest priority

Functions (SIN, LOG, etc.)
T

*'/

+,-

Invert. (e.g. -SIN)

<> (or ><)
>
< Relational operators

<=

NOT

AND

OR Logical operators ¥

XOR Lowest priority

- Example: 22 1 3 + 6resultsin 14,since 2 1 3is calculated first.

376.1452.00 1.17 E-6

http:376.1452.00

1.4.7 Special Features of the Equal Sign
The equal sign does not have the same meaning as it has in algebra.
It means: “Receivesthe value of"

and must not be confused with the algebraic meaning:
"Is equal to".

The statement X = X + 1

would be algebraically incorrect since it contains the contradiction 0 = 1. This statement is correct in
BASIC, however, and means:

X “receives the value of" the old value of X plus 1
or
X=X+ B

X “is the value of" the old value of X times the value of B.

(See also 1.4.9.1 Relational Operators)

1.48 Mathematical Expressions as Examples of Compute Statements

Mathematical expressions are written in BASIC in a manner slightly different from the common
notation. The following listillustrates algebraic and BASIC notations.

Algebraic BASIC
ey (A +B) / (C+D)
c+d
e (AR+B)/C
c
ai® A-B/C
c
a_ AR 7B 1 C
b
c
a A/ (B /C)
b
c
- A/ (B ()
bxc

376.1452.00 1.18 E-6

http:376.1452.00

(ab)NC (A*B)*N=*C

-
ba+1 Bt (A+1)
ba+1 Bt A+1
S A+ 0.6 [3/5=0.6]
2\/ a3
. A+ (-0.5) [1/2 = 0.5]or 1/5QR (a)
2\[at
The compute statement is then generated by the equal sign whose special feature has already been
referred to. A compute statement is represented in the same manner as in algebra.
-
e.g. X=A+B+C
L Mathematical expression
A variable to which the result
is assigned.
A
—

376.1452.00 1.19 E-6

1.4.9 Operators

1.4.9.1 Relational Operators

Relational operators are used to compare numerical values or strings. The result is 0 if the comparison
is not fulfilled (false) or -1 if the condition is fulfilled (true). This means that all bits are 1 so that the
comparisons using the Boolean operators can be linked further without limitations.

in the case of larger/smaller comparisons of strings, these are processed character-by-character
starting at the left. The first character of the two strings found not to be identical is used for the
comparison. The ASCIl value of the characters are compared. This leads to the result of the character
string comparison.

> Greater than

< Less than
>= or => Greater than or equal to
<= or =< Less than or equal to
<> or >< Not equal to

= Equal to

Examples of comparisons:
100 IF ACB THEN ?A

200 IF C>=A®B THEN 2C

300 IF A<>100 THEN 1000

400 IF A<100 AND A>10 THEN GOTO 20

Example of the comparison of strings:

400 IF A$="E" THEN ?"READY"

376.1452.00 1.20 E-6

OR

'

oT

XOR

Logical Operators

Boolean operators represent an indispensable aid in the digital and control fields when-
ever it is necessary to link individual bits of binary numbers. They are also often useful for
complex read-in tasks.

Syntax: a AND b
aoOR b
NOT a
a XOR b

a,b: Constant, variable or numerical expression; places after the decimal
point are rounded off.

The Boolean operators are used to link numbers bit by bit. These operators can be used
without limitation in @ mathematical expression. The numbers used are first converted
from the floating-point format to a 16-bit number in the range between -32768 and 32767.
Range violations cause an error message. Negative numbers are represented in two's
complement (with leading 1). Places after the decimal point are rounded off.

Example of iogical operations

10 LET A = 5 OR 12 0101 = §
OR 1100 = 12
-A = 13 1101 = 13
20 LET B = A AND 6 01101 = 13
AND 00110 = 6
->B = 4 00100 = 4
30 LET C = NOT A A 1101 = 13
-C = ~-14 NOT A 1111111111110010 = -14
40 LET D = 7 XOR A 00111 = 7
XOR 01101 =13
=D = 10 01010 = 10

Example: 100 C=G AND 16
200 IF A=5 OR C=3 THEN500
300 H=NOT H
400 X=(A OR B)AND NOT C

Note: A comparison provides the value -1(all the 16 bits are set) if it is "true”.

376.1452.00 1.21 E-6

1.4.9.3 Power Operator

alh

This generates the power function with any base and any exponent.
Mathematical: Y=ab

Syntax: artb

a,b: Constant, variable or numerical expression

Example: 100 Y=AtX

376.1452.00 1.22

E-6

1.5 Using the IEC Bus under BASIC

1.5.1 Introduction into the IEC-bus Syntax

Note: The hardware of the IEC bus with extracts from the standard can be found in the operating
manual "Process Controller”.

The controller has its own instruction set for operations with the IEC bus since it is an interface with a
large number of functions. A common feature of all instructions is that they commence with IEC and
can therefore be readily distinguished from the remaining BASIC program. All instructions can be
written without further additions (e.g. IEC OUT10,A$) if only one IEC bus is fitted in the PCA. If a
second IEC bus is to be accessed, the number of the IEC bus is specified after IEC (e.g. IEC 20UT 10,A%).
If IEC is followed by a 1 or by no data at all, the instruction is executed for the 1st bus. All instructions,
i.e. also IECTERM, IECTIME, IECRLC etc., are only executed for the specified bus and must be specified
again for the second IEC bus if required.

If several IEC instructions are in a sequence, the letters IEC need only be specified in the first
instruction. All following statements are separated by commas and joined to the first one (without
IEC).
Example: 2 IEC buses, one of which transfers the control

100 IEC TERM13, TIME100, EOI, LAD12, $OUT"TEST"

110 IEC 2RLC. ADR7, TIME20000, TERM 0
The IEC-bus instruction set comprises the following types of instruction:

a) Complex instructions

IEC OUTa,
IEC INa,

These are normally sufficient to control measuring instruments so that no further instructions need
be specified. They address the instrument specified in a, handle the data transfer and unaddress the
instrument again.

b) Instructions to set the interface, e.g. delimiter or time out.

IEC TERM IEC ADR
IEC TIME IEC T1

Need only be specified if the default values are not used.
¢) lInstructions for data input and output

IEC %IN IEC %0UT
IEC SIN IEC $OUT

376.1452.00 1.23 E-6

http:376.1452.00

d) Instructions for transmitting IEC commands and statements.

IEC LAD IEC LLO
IEC TAD IEC DCL
IEC SAD IEC PPV
IEC MLA IEC MTA
IEC GTL IEC SPE
IEC SDC IEC SPD
IEC PPC IEC PPD
IEC GET

IEC TCT

A data word is output on the IEC bus together with ATN.

e) Instructions for transmitting line messages.

IEC ATN IEC NATN
IEC* IFC

IEC REN IEC NREN
IEC EOI IEC NEOI

These influence the lines of the management bus.

f) Instructions to carry out the serial polil or paraliel poli.
(Some of these instructions are also encountered under point d).

IEC PPC 1EC SPL
IEC PPE IEC SPE
IEC PPL
IEC PPD IEC SPD
IEC PPU

g) Instructions required when transferring the control in the presénce of several controllers:

IEC RLC
FEC HEYT
IEC WTCT
IEC WMLA
IEC WMTA

376.1452.00 1.24

E-6

1.5.2 Several Controllers on the Bus

The computer is usually the only controller on the bus. It then performs the system control and can
transmit the messages IFC and REN. The jumper X5 must be plugged in between pin 1 and pin 2. in
the PSA/PAT controilers the signal direction of these control lines is automatically reversed.The
message IFC is automatically output on the bus when starting BASIC with RUN.

If two |IEC buses are installed in the controller, they both usually perform the system control. IFC is
then transmitted on both buses when BASIC is started. Following the start, the system controller also
holds the lines ATN and REN active low (true).

If two controllers are connected to one IEC bus, one of them must relinquish the system control and
become the addressed controller. In the PCA jumper X5 of the addressed controller must then be
inserted between pin 2 and pin 3. After starting BASIC, the control on the bus must be passed back
with [ECRLC as the first instruction so that the IEC instructions are also initialized accordingly. IFC and
REN must not be transmitted after IECRLC.

Following IECRLC, the computer is first present as a talker/listener on the bus. In this function it must
not set ATN to true, i.e. it must not transmit addresses and commands. An attempt leads to the error
message “not a IEC-Bus-Controller”.

If the computer serves as talker/listener, BASIC requires a bus address. It is assigned the address using
IECADR. The address may be changed while the program is running.

Data transfer is then performed via the instructions IEC%IN and IEC$IN or IEC%OUT and IEC$OUT.
BASIC executes these instructions only if it has been correctly addressed before (i.e. as a talker or
listener). After unaddressing the controller, a bus transfer between the system controlier and other
devices on the bus can be handled without these data being read into the IN instruction, for instance.

The program is aborted with a TIME OUT error message if the controller has not been addressed
within the time specified by IECTIME and if data transfer has not commenced.

A further possibility of synchronizing data transfer is provided by the instructions IECWMLA and
IECWMTA. At this point, the computer waits for being addressed. These instructions do not aliow to
abort the program with TIME OUT in order to be able to synchronize rare and irregular data transfer
as well.

The computer can of course also assume the control (not the system control) on the bus. it waits for
taking over the control with the instruction IECWTCT. After applying its talker address to the bus and
receiving the message TCT, it executes the IECWTCT instruction and then possesses the control on the
bus. It can now transmit addresses and commands (ATN true) and thus control the connected devices.
Control is released again by transmitting the talker address of the controller which is to take over the
control and the message IECTCT. The controller then serves again as talker/listener on the bus.

376.1452.00 1.25 E-6

1.5.3 Using the Line Message Service Request

1.5.3.1 The Computer as Controller

As a controller, the computer can receive a service request. If a service request appears on the bus, i.e.
if the SRQ line is set to low, the BASIC program can branch to a subroutine if the statement ON SRQ
GOSUB m or ON SRQ GOTO m has been executed before. If an SRQ is present on the bus, BASIC
completes the current instruction and then executes the first instruction of the subroutine or the
branch destination m. A serial poll should then be carried out in the subroutine or at the branch
destination since most devices do not enable the SRQ line again before their status has been read in
by a poll. ;

Application: In particular if the devices connected have long response times (>100 ms), the
execution time of a BASIC program can be reduced by fetching the measured value in
a service request routine. If several controllers are connected to the bus, they can be
serviced in a poll routine and the control can be transferred to another controller if
applicable.

1.5.3.2 The Computer as Talker/Listener

The device can transmit service requests as a talker/listener, i.e. if the control has been transferred via
the bus using IECRLC. This is carried out using the instruction IECRQS b. When the instruction is
executed, the SRQ line is first set to low and the program is continued. After receiving the message
Serial Poll Enable and being addressed with the talker address defined in IECADR, BASIC applies the
status byte b (decimal 0 to 255) defined in the IECRQS instruction to the bus. Bit 7 (decimal 64) of the
status byte is high as long as the SRQ is present. The computer cancels the service request only after
this byte has been fetched by the controlier. The SRQ line then returns to high, provided that there is
no service request from another device.

The computer has the capability of participating in a serial poll. The status word applied in the serial
poll depends on its status.

0 after IECRLC _
64 OR b after IECRQS b (bit 7 is set)
191 AND b after IECRQS b and cancelling of the SRQ line (bit 7 is reset)

1.5.4 Execution of Parallel and Serial Polls

A good method of avoiding the occurrence of waiting times for measured values from IEC bus devices
is to read in the values in a service request subroutine. BASIC executes the program and branches into
a subroutine upon occurrence of a service request in which the device can then be serviced. A pre-
requisite is that the instrument has a service request facility and that the statement ON SRQ GOSUB
has been executed (see Section 2.3).

If several devices can transmit SRQ on the bus, the instrument raising the service request must be
determined at the start of the SRQ subroutine.

This can be carried out either sequentially in a serial poll or simuitaneously in a parallel poll.

376.1452.00 1.26 E-6

1.5.4.1 Serial Poll

The easiest method of detection is a serial poll with the statement IECSPL b,v%. All devices from
which the service request might originate are then addressed one after the other with their address b
and their device status isread into the variable v% as an 8-bit integer.

Example: 100 ON SRQ GOSUB 1000
110 Program

1000 IEC SPL 5, A%
1010 IEC SPL 12, B%
1020 IEC SPL 14, C%
1030 REM Processing of A%, B%, C%

1100 ON SRQ GOSUB 1000: RETURN

As is the case with all combined IEC-bus instructions, the serial poll can also be executed using
individual instructions.

The instruction [ECSPL b, v% corresponds to the following individual statements:

Example: IEC SPE
IEC TAD b
IEC %ZIN A%
IEC MTA
IEC SPD

Unaddressing is not necessary between the polls of several instruments. The first example can
therefore also be implemented with a smaller number of bus cycles as shown in the following:

Example: 1000 IEC SPE.TADS,%INA%,TAD12,%INB%,TAD14,%XINC%
1010 IEC MTA,SPD

1.5.4.2 Parallel Poll

The parallel poll is the second method which allows the controller to poll the status of the SRQ line of
the connected devices. The parallel poll sets the lines EOl and ATN to low and reads in the status word
applied to the data bus by the devices. The parallel poll is thus carried out faster than the serial poll.
Prior to polling, each device is assigned its own data line (DIO) on which it can signal its status. In
contrast to the serial poll, the parallel poll does not change the SRQ status of the polled devices. A
parallel poll can only be performed by the controller on the bus.

BASIC supports the parallel poll with a series of IEC instructions. The device setting is present in the
main program since it need only be made once. Devices not set for parallel poll do not participate.

Example: 100 ON SRQ GOSUB 1000
110 IEC LAD 5,PPC ,PPE 1 6,UNL or:
110 IEC PCON 5,1,6
120 IEC LAD 12,PPC ,PPE 0 4,UNL or:
120 IEC PCON 12,0.4

376.1452.00 1.27 E-6

http:376.1452.00

The first parameter of the IECPPE instruction indicates whether the polled device signals its SRQ status
with 0 or 1. The second parameter identifies the DIO line on which the reply is to be made.

The parallel poll is triggered by the IECPPL instruction.

Example: 1000 IECPPL A%
1010 IF A% AND 32 THEN ...

The status word is read into the variable A% during the parallel poll. Then the service request line
and thus the device sending the SRQ can be determined. This device is then polled in a serial poll
routine.

The controller can also participate in a parallel poll as a talker/listener. In this case it is necessary to
assign to the controller one of the 8 parallel poll lines on which it is supposed to signal its status. This
is carried out in the following steps:

1) Addressing the controller as listener

2) Transmitting the command Parallel Poll Configure

3) Transmitting the command Parallel Poll Enable with indication of the line on which the controller
is to respond as well as indication of the sense bit 0 or 1

4) Unaddressing the controller

By simultaneously applying EOI and ATN, the controller can now be requested to apply its identi-
fication to the bus. It then applies its SRQ status to the bus line assigned to it under point 3 in true or
inverted form depending on the sense bit.

Application: The computer can use a service request to inform the controller that a measured value or

a calculated result is present or that it wants to take over again the control on the bus.
Functions can be differentiated using the status word in the serial poll.

376.1452.00 1.28 E-6

http:376.1452.00

1.6 Incorporation of Assembler Subroutines in BASIC Programs

This section describes the incorporation of assembler subroutines in BASIC programs. In particular,
information is provided on the following points:

® procedures by means of which user-specific subroutines can be loaded,

® handling of the interface between BASIC and the subroutines,

® examples of the procedures.

BASIC occupies approx. 160 Kbyte of free storage space joining onto MS-DOS. This block contains the
BASIC interpreter (with data and stack) and the BASIC user program (with data).

A block within or outside the BASIC memory range can be assigned to the assembler subroutines by
using different procedures.

We recommend the four procedures listed below for generating or loading assembler subroutines:

in an integer matrix within the BASIC data segment
with Poke within or outside the BASIC data segment
with LOAD# und CALL# outside BASIC

as a memory-resident part of DOS outside BASIC.

The following documents are recommended for the generation of assembler routines:

Microsoft MS-DOS User's Guide/User's Reference
Microsoft MS-DOS Programmer's Reference Manual

1.6.1 Procedure for Loading Subroutines

Assembler routines can be loaded according to one of the following procedures. The selection of the
procedure depends on the size and the characteristics of the assembler program.

1.6.1.1 In an Integer Matrix within the BASIC Data Segment

A small subroutine can be easily initialized by loading into an integer matrix within the BASIC data
segment.

Characteristics:
No assembier is required in the writing of programs.
The complete code (BASIC and machine code) is located within one file.

When loading the subroutine into a memory area under BASIC control, there is no danger of
accessing critical areas of the memory.

376.1452.00 1.29 E-6

http:376.1452.00

Notes:

If the BASIC user program occupies the greater part of the data area, memory space is lost by
. assigning the subroutine to the data segment.

The machine code must be relocative. This means that it must not contain any variables whose values
depend on the load address of the subroutine.

1.6.1.2 With POKE within or outside BASIC

This procedure is suitable like procedure 1 (Section 1.6.1.1) for small subroutines. The difference is
that routines can also be filed outside the BASIC data segment.

Characteristics: see Section 1.6.1.1

Notes: see Section 1.6.1.1

The memory area must be managed by the user in order to protect the routines from DOS or other
programs if the assembler subroutine is loaded in a memory area outside the BASIC data area.

1.6.1.3 Outside BASIC (with LOAD# and CALL#)

This procedure is suitable for programs up to 64 Kbyte. A vacant memory area outside BASIC is
required. BASIC manages the available memory for the user in order to protect the user-specific
subroutine.

Characteristics:

No memory space in the BASIC data segment need be used for the subroutines.

Notes:

The user is not responsibie for managing the occupied memory area.

1.6.1.4 Outside BASIC as Memory-Resident Part of the DOS

This procedure can be used to load programs whose size is practically only limited by the memory
space available.

Characteristics:

The procedure enables multi-segment routines to be used which cannot be handled using LOAD#
and CALL#.

The procedure converts the subroutine into a memory-resident DOS part; it is not necessary to reserve
a memoaory area.

376.1452.00 1.30 E-6

http:376.1452.00

Notes:

DOS-loaded subroutines remain memory-resident after loading. The routines are only cleared from
memory when the operating system is booted again. Thus multiple copies can be resident in the
memory. in order to clear the routine from the memory, a branch to the bootstrap loader can be
made at the end of the BASIC program.

1.6.2 Interface between BASIC and Assembler Subroutines

The following applies if the user-specific subroutine is called:

The DS register is set to the BASIC data segment.

A stack area of 10 words is available for the routine. If a larger area is required by the subroutine,
its own stack must be created where at least 128 byte are not used by the subroutine (interrupts,
DOS).

The address of the variables in the stack is transferred for each parameter in the call. The segment
address and then the offset address of the variables are written onto the stack.

If the transfer parameter is a string, the transfer address is a pointer at the string descriptor. The
format s as follows:

Word 0 contains the current length of the string.
Word 1 contains the offset of the string.

The word ahead of the string contains the maximum string length.

Caution: The subroutine must not change the code for the maximum length of the string.

The following applies to the return to BASIC:

interrupts inhibited by the subroutine must be enabled.

® The registers SS and DS must contain the original values again.

® The actual return takes place using a far return.

376.1452.00 1.31 E-6

Access to parameters in the stack:
The macro assembler contains the pseudo instruction STRUC in order to define e.g. offsets.

Example: FRAME STRUC

RET_OFF DwW
RET_SEG DwW
PARA_N_OFS Dw
PARA_N_SEG Dw
PARA_1_OFS DwW
PARA_1_SEG oW
FRAME ENDS

Itis then possible to access the stack parameters in the following manner:

Mov BP, SP
Mov BX,[BP.PARA N OFS] ;LOAD OFFSET OF PARAMETER N IN BX

FETC,

1.6.3 Examples

Procedure 1 (procedure 2)
(Sections 1.6.1.1and 1.6.1.2)

The machine code for the assembler subroutine is first determined (e.g. with Debug).

A sufficiently large integer matrix is dimensioned in the BASIC program.

The machine code is assigned word by word to the matrix elements. It must be taken into account
that the processor first expects the least significant byte when reading the instructions. The data must

therefore be stored in this sequence.

@ The position of the subroutine within the BASIC data segment is determined using the VARPTR
function.

® The subroutine can be called using the CALL instruction.

376.1452.00 1.32 E-6

http:376.1452.00

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

Example:

REM S0 9999890000090 8000000000000 8000080000 0080000 RORRSISETRISESTS
REM ® .
REM * B1.BAS \ 31.03.85 .
REM .
REM * THE PROGRAM ENABLES INTERRUPT FLAGS TP BE SET AND *
REM ® RESET .
REM .
REM 0098009080000 08 0008000080008 0000000 00000ttt tontsdee
REM

DIM AR%(2)

DATA "CBFA"

DATA "CBFB"

FOR I=0 TO 1: READ A$: AR%(I)=HEX(A$): NEXT I
STI=VARPTR(AR%(1))

CLI=VARPTR(AR%(0))

CALL STI

CALL CLI

END

376.1452.00 1.33

http:376.1452.00
http:31.03.85

Procedure 2
(Section 1.6.1.2)

The difference between procedure 2 and procedure 1 is that the bytes are stored in the matrix or
outside the BASIC memory area using the POKE instruction. The POKE instruction itself ensures that
the correct byte sequence is retained. This procedure is therefore more suitable than procedure 1 for
small programs.

In order to set the subroutine outside the BASIC data area, the required segment address must be

specified in the BASIC program using the SEGMENT instruction. References using VARPTR are then no
longer possible because the subroutine is stored outside the BASIC data segment.

Example:

10 REM t AR R EE R R ER R R R RSS2 R R R RS RS E R R ER R E L)

20 REM = -
30 REM * B2.BAS\31.03.85 &
40 REM * -
50 REM * IN THIS EXAMPLE, THE DOS FUNCTION 30H IS CALLED. THE 4
60 REM * DATA RECEIVED BY DOS ARE TRANSMITTED TO THE BASIC -
70 REM * COMMUNICATION AREA (40:20), BASIC PROGRAMS CAN READ »
75 REM * THESE DATA USING PEEK. »
77 REM = .
80 REM AR AR R LR AR R R R LR R R R LR R R R AR ERRRR SRR R X2)
90 REM

100 DIM AR%(10)

105 REM

110 DATA "B4","30": REM MOV AH,30H

120 DATA "CD","21": REM INT 21H

130 DATA "1E": REM PUSH DS

140 DATA "BB","40","00": REM MOV DX, 40H

150 DATA "8E","DB": REM MOV DS,DX

160 DATA "A3","20","00": REM MOV WORD PTR[20],AX

170 DATA "1F": REM POP DS

180 DATA "CB"; REM RETF

185 REM

190 P=VARPTR(AR%(0)): FOR I=0 TO 14: READ AS: POKE (P+I),HEX(AS$): NEXT I
200 SUBR=VARPTR(AR%(0)): CALL SUBR

210 SEGMENT HEX("40")

220 MA%=PEEK(HEX("20"))

230 MI%=PEEK(HEX("21"))

240 SEGMENT DEF

250 PRINT "MS-DOS ";MA%;".";MI%

260 END

376.1452.00 1.34 E-6

http:B2.BAS\31.03.S5

Procedure 3
(Section 1.6.1.3)

in this procedure the instructions LOAD# and CALL# contained in the BASIC are used to directly load
a "program file" from the floppy disk or hard disk into the memory. The .COM file is generated by

assembling a source, linking the OBl file, converting the EXE file and renaming the .BIN file.

Example:

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

O 0 N O O &6 W N -

W N O O N
0O 0O 00000 Lo

END

LA R AR RS 22222 RS R 2R R 22 R R A R R RS L R R R R R R 22 2 2 0]l

. B3.BAS \ 31.03.85 *

- THIS BASIC PROGRAM LOADS AND CALLS A .COM FILE *

AR R R AR AL R RS AR ER RS2SR R AL R R AR L AR 2R A2 22 L 2122

LOAD# 1,"B3.COM"

CALL# 1,P1%,P2%,P3%,P4%

IF P1%=HEX("FFFF") THENSO

PRINT "SECTORS PER CLUSTER :";P1%
PRINT "AVAILABLE CLUSTERS 1";P2%
PRINT "BYTES PER SECTOR " P3%
PRINT "CLUSTERS PER DRIVE 17 Pa%

376.1452.00 1.35

E-6

; B3.ASM

H THIS EXAMPLE SHOWS HOW AN ASSEMBLER SUBROUTINE DETERMINES

; THE SECTORS PER CLUSTER, AVAILABLE CLUSTERS, BYTES PER
SECTOR AND TOTAL CLUSTERS PER DRIVE USING THE DOS CALL 36H
AND RETURNS THESE DATA TO THE BASIC VARIABLES.

H GENERATION OF THE .COM FILE:

: - CREATION OF THE SOURCE FILE (B3.ASM) WITH AN EDITOR
i (E.G. WORDSTAR)

H - MASM B3 (ASSEMBLE SOURCE)
H - LINK B3 (LINK .0BJ FILE)
: - EXE2BIN B3 (CONVERT .EXE / .BIN)

: - COPY B3.BIN B3.COM (GENERATE .COM FILES)

PAGE 69,132 ;LISTING DIRECTIVE

PARSTRUC STRUC ;PARAMETER LIST

OFS_RET DW 0 ;sOFFSET FOR RETURN

SEG-REG DW 0 ; SEGMENT

OFS_P4 DW O ;OFFSET PARAMETER 4

SEG4 DWw o0 ;SEGM. " S

OFS_P3 DW O ;OFFSET PARAMETER 3

SEG3 oW 0 ;SEGM. " g

OFS—P2 DW 0 ;OFFSET PARAMETER 2

SEG2 Dw 0 ;SEGM. " =

OFS_P1 DW © ;sOFFSET PARAMETER 1

SEG1 Dw O ;SEGM. " L

PARSTRUC ENDS ;END OF PARAMETER LIST

CODE SEGMENT 'CODE’ ;SEGMENT = CODE ; CLASS = CODE
ASSUME CS:CODE,DS:CODE ;CODE AND DATA IN CODE SEGMENT
ORG 100H ;ADRESS LEVEL = 100H

(required!)

SUBR PROC FAR ;DECLARATION OF A FAR PROCEDURE

STRT: JMP BEGIN ;JUMP TO START OF CODE

WORD1 DW 7 ;USER DATA DEFINITIONS

(IM CODE)

WORD2 Dw ? :

WORD3 Dw ? ; (NOT USED IN EXAMPLE)

WORDN DW ? ;END OF USER DATA

BEGIN: MOV DL,O ;DEFAULT DRIVE

376.1452.00 1.36

http:376.1452.00

MoV
INT

MOV
MoV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
RET

SUBR ENDP
CODE ENDS
END STRT

376.1452.00

AH, 36H
21H

BP,SP
DI,[BP.OFS_P1]
[DI].AX
DI.[BP.OFS_P2]
[PI].BX
DI,[BP.OFS_P3]
[DI],CX
DI,[BP.OFS_P4]
[DI],Dx

;FUNCTION 36H
;ENTRY INTO DOS

:BASE POINTER ON STACK
;OFFSET BASIC-PARA 1
:IN BASIC-PARAMETER 1
;OFFSET PARA 2

;IN BASIC-PARAMETER 2
;OFFSET PARA 3

:IN BASIC-PARAMETER 3
;OFFSET PARA 4

;IN BASIC-PARAMETER 4

.
’

;(required!)

1.37

E-6

Procedure 4
(Section 1.6.1.4)

The EXE program which can be directly executed by the operating system is loaded into the memory
by entering the name.

The loaded program must consist of two parts, the load part and the actual subroutine.

The following steps must be carried out in the load part:
® The entry address of the subroutine must be filed in the BASIC user communication area.

® The DOS must be informed of which part of the program is to remain memory-resident (see
operating system function 31H).

The memory area provided for data exchange between BASIC and assembler subroutines is located in
segment 40H at offset 20H and is 4 byte long. The load part files the segment and offset addresses of
the entry point of the actual routine here.

Example:

10 REM LR L ERIEEEERERLEE R R R R EERERRREERERRERRERER R EREEEREERE RN
20 REM * '
30 REM * B4.BAS \ 31.03.85
40 REM *
50 REM *
60 REM *

70 REM * .
80 REM

90 REM““.....-.....‘..““......‘......"...............‘}
100 SEGMENT HEX("40")

110 OF=PEEK(HEX("20*))+256%(PEEK(HEX("21")))

120 SG=PEEK(HEX("22"))+256*(PEEK(HEX("23%)))

130 SEGMENT SG

140 CALL OF

e & @

THIS BASIC PROGRAM CALLS A RESIDENT SUBROUTINE

;B4 .ASM

: THIS ASSEMBLER SUBROUTINE CONTAINS TWO PARTS: ;
§ - THE LOAD PART
- . - THE ACTUAL SUBROUTINE

s THE PROGRAM ONLY OUTPUTS TwWO CHARACTERS TO INDICATE THAT
; IT HAS BEEN CALLED CORRECTLY BY BASIC.
PAGE 69,132 ;LISTING DIRECTIVE

PROGSIZE EQU

((OFFSET ENDE - OFFSET START +100H)/16) + 1 ;SIZE IN PARAGRAPHS:
:OF RESIDENT PORTION
;OF USER PROGRAM

CODE SEGMENT 'CODE’
ASSUME CS:CODE

376.1452.00 1.38 E-6

http:376.1452.00
http:31.03.85

SUBR
START:

WORD1
WORD2
WORD3

BEGIN:

RET
SUBR

END:
LOADER

LOADER
CODE
END

PROC
JMP

Dw
Dw
Dw

MOV
MoV
INT
MoV
MOV
INT

ENDP

PROC
MoV
MoV
MOV
MOV
MoV
MOV
MOV
MOV
INT

ENDP
ENDS
LOADER

376.1452.00

FAR
BEGIN

DL,"0°’
AH,2
21H
DL, 'K’
AH,2
21H

AX.40H
ES, AX
AX,OFFSET SUBR
ES:[20H],AX
AX,CS
ES:[22H].AX
DX, PROGSIZE
AH, 31H

21H

1.39

E-6

http:376.1452.00
http:ES:[22H].AX
http:ES:[lOH].AX

Y7 Using Files and Interfaces

It is possible to read data from or write data to a file on the floppy disk or hard disk. This also applies
to hardware interfaces such as printers, IEC bus, serial communications interface, and so on. This is
why the operating system and BASIC do not always make a distinction between them; the same
input/output instructions such as PRINT#, INPUT#, INPUTS are used for both files and interfaces. The
OPEN instruction is used to determine the interface or file to be prepared first.

There are two OPEN instructions:

OPENO opens a file for the output, i.e. an already existing file is overwritten, or a new file is created
under the indicated name.

OPENI opens a file for subsequent inputs. If this file does not exist, an error message is produced.
This is illustrated by the following example (more details will be given at a later date).

100 OPENO#1,"DATEI.DAT"

110 PRINT#1,TIMES

120 CLOSE#1

A file with the name "DATEI.DAT"is opened and the current time recorded in it. The time stored can
be read by opening the file:

300 OPENI#13,"DATEI.DAT"

310 INPUT#13,A$:PRINT AS

120 CLOSE#13

The filename can be a sequence of max. 8 characters before and max. 3 characters after the point. The
permissible characters can be found in the manual "MS-DOS User's Guide / User's Reference”. This
manual explains how to select a drive by placing a letter ahead with a colon and how to use a sub-
directory separated by backward slashes if the paths preset by MS-DOS are not to be used.

Both upper-case and lower-case letters can be used.

Example of a permissible name:

100 OPENO#1,"E:\User\Datei.dat"

In MS-DOS, a few names are allocated to interfaces and cannot be used as filenames:

AUX,CON,LST,PRN,NUL,CLOCK

Other names are reserved for optional device drivers*! and are allocated as soon as the associated
device driver is loaded with CONFIG.SYS:

STRING, COM1, COM2...6, IEC, BEEPER, TTL GRAPH, ANG, LPT1, LPT2, UCI, DOP, ADC,
REL1..4

If the reserved names listed above are used, MS-DOS attempts to address the associated interface.
This is also the case if these names have a file extension (after the point)!

*) Adevicedriveris a software module which makes the hardware accessible via a standardized soft-
ware interface.

376.1452.00 1.40 E-6

In the example of the OPEN instruction, a # character is used, followed by a number. This number is
referred to as the channel number and establishes the reference between the OPEN instruction and
the subsequent input or output instructions. It can be freely selected by the user in the range
between 1 and 15. Of course, a particular channel number can be allocated only once at a time. How
many channels can be open at a time is a function of many factors:

The file CONFIG.SYS with FILES = n informs MS-DOS about how many files are to be open at a time
(default 8) (see Appendix D of the MS-DOS User's Guide). MS-DOS provides max. 20 files to be opened
for each process (BASIC is a process in this case). Five of them are already reserved for standard
inputs/outputs. BASIC occupies further channels if the device drivers are addressed with TTL, ADC,
REL, MPG IN/OUT. The first IEC-bus instruction and the first graphics instruction also use one channel
each so that only the remaining channels are available to the user. If an attempt is made to open
more channels than provided by MS-DOS, the error message ERROR 52 "DOS open error” is produced.

Using the CLOSE# instruction, the channel is closed again and the channel number released. The
filename is now stored on the floppy disk or hard disk. If an interface has been addressed with the
channel number, the interface is deactivated. In the case of the serial interface, for instance, the sync
lines are reset. In addition, it should be noted that BASIC provides a buffer with 32 characters for all
inputs/outputs to interfaces. In this buffer, data items are first collected and combined by MS-DOS to
sectors of 512 characters for the floppy disk or hard disk before they are input or output. If a buffer is
only partially filled, itis first output with the CLOSE instruction.

Atthe end of a program (END instruction or last line), the R&S BASIC closes all open channels.

In the case of the RUN commands, all channels opened in direct mode are closed. This is aiso the case
after an error message in order to make sure that important data items are stored.

If the OPEN instruction includes the following names, BASIC buffers the data in order to transfer
them to MS-DOS for a block-by-block transmission:

OPENO#1,"CON:" for the built-in monitor

OPENI#1,"CON:" from the installed keyboard

OPENO#1,"PRN:" for a printer connected to the first Centronics interface
OPENO#1,"LPT1:" for a printer connected to the first Centronics interface
OPENO#1,”LPT2:" for a printer connected to the second Centronics interface
OPENI/O#1,"AUX:" from/for the first serial interface (see manual PCA-BS)
OPENI/O#1,"COM1:" from/for the first serial interface (see manual PCA-BS)*)
OPENI/O#1,"COM2...6:" for the other serial interfaces *)

OPENI/O#1,”IEC:" from/for the IEC-bus interface

Note the colons placed after the interface names. If this indication is missing, the very same interface
is addressed all right, but only MS-DOS realizes that an interface and no file is involved. BASIC does
not buffer the data which causes the input/output to slow down considerably.

*) not with PSA and PAT

376.1452.00 1.41 E-6

http:376.1452.00

- At first sight, it is difficult to understand why an output on the screen requires the whole sequence

100 OPENO#3,"CON:2

110 PRINT#3,"MEAN VALUE"
120 PRINT#3,

130 CLOSE#3

although the same effect can be obtained by writing

100 PRINT "MEAN VALUE"
110 PRINT

This may, for example, be due to the fact that inputs/outputs are to be diverted to the keyboard or
screen first for test or simulation purposes. The data stream can only be diverted by replacing the
string in the OPEN instruction. Alternating output to the screen and the printer is also possible:

100 OPENO#3,"CON:":GOSUB Output:CLOSE#3
110 OPENO#3,"LPT2:":G0SUB Output:CLOSE #3

1000 Qutput:PRINT#3,......

1500 RETURN

A further purpose of the OPEN instruction is to set the interface into a particular status. To this end,
the string after the colon of the interface name is transferred to the device driver. In the following

example, the address 6 is output to the |IEC interface and the timer set to 1000 ms for all inputs/
outputs:

100 OPENO#3,"IEC:LAD6,TIME 1000"

In the case of the serial interface, the data transfer rate and the number of bits per character are
determined by the string after COM1, for example in the PCA (see manual PCA-BS).

The syntax is identical with that of the MODE program. At the MS-DOS level, the same IEC-bus setting
as above is possible with MODE IEC:LAD6,TIME 1000. For setting the other interfaces, refer to the
description of the MODE program (see manual "Operating System for PCA” or the manual of the
option concerned).

In the examples stated, the PRINT# instruction is always used for the output. Actually, this is the only
instruction required for data output. If the data items are to be output to a file and then read in
again using INPUT#, note that INPUT#, being an ASCII input, is confined to one line. A CR (carriage
_return) character must therefore be inserted for the output after the 80th character at the latest.
There is no such limitation with the INPUTS$ () function, where a character may assume any value from
0 to 255 (8-bit binary value), however the block length must be known.

Therefore, the following example first stores on the file the length of the string which may be up to
30000 characters:

100 PRINT#3,LEN(AS)+CHR$(13);
120 PRINT#3,AS;

The input instructions first read the number into the variable Count and then the string:

200 INPUT#3,Count
230 Strg$=INPUTS(Count,#3)

376.1452.00 1.42 E-6

http:376.14S2.00
http:Strg$=INPUT$(Count.N3

The INPUT$() function tries to read the specified number of characters first. If, however, the end of
the file is reached before or if the timer becomes active, the number of characters will be smaller than
requested or equal to 0, indicating the end.

In the event of the special case number = 1, single characters are read in in order to be checked, e.g.,
for particular values. If no character is applied, a blank character string (LENG(A$) = 0) is returned.

376.1452.00 1.43 E-6

http:376.1452.00

1.8 The Graphics System

Graphical representations permit to illustrate numbers and other pieces of information very efficient-
ly. Therefore, BASIC offers powerful graphics instructions enabling to draw on the screen, a con-
nected plotter or printer or to transfer the picture to or fetch it from a file.

In order to draw a simple line, first move the imaginary pen to the start point with the desired x- and
y-coordinates using the MOVE instruction and then draw the line to the x,y end point using the
DRAW instruction.

100 MOVE 0,0
110 draw 639,399

This exampie draws a line from the bottom left to the top right of the screen, provided the coor-
dinate system and the display section have not been changed by the WINDOW or VIEWPORT
instructions (more about this later).

Using the instruction RDRAW x,y, it is possible to draw relative to the current position of the pen
without knowing the absolute x/y-coordinates. Like the parameters of all graphics instructions, these
delta X, delta Y values can be numerical expressions, i.e. numerical constants, variables, functions or
any combinations produced by arithmetical operations.

100 MOVE 100,100: GOSUB Triangle
110 MOVE 200,200: GOSUB Triangle
120 MOVE 300.300: GOSUB Triangle
130 END

140 Triangle:

150 RDRAW 100,0

160 RDRAW -50,86.6

170 RDRAW -50,-86.6

180 RETURN

376.1452.00 1.44 E-6

http:376.1452.00

Similar to relative drawing, the instruction RMOVE x,y permits to move to relative coordinates.

Different "pens” can be used for drawing on the screen. By default, "bright drawing” is set after
switching on (SET 1). SET 0 activates the mode "dark drawing” or deleting; bright dots are blanked.
SET-1 is used for inverted drawing; if a line is drawn on dark background, this is identical with the
default setting SET 1. If, however, the line to be drawn intersects another one, the intersection point
is dark (with SET -1). This is an important feature if the line is to be deleted again subsequently. it is
simply drawn once again (continue with SET -1); bright dots become dark and the dark intersection
point becomes bright again. The intersected line now looks as before, and so do all places that have
been overwritten.

Caution: ’ §

Although, basically, the graphics instructions can also be executed on a plotter, this is limited by its
physical characteristics. A plotter can only operate in the mode "SET 1”. Once selected with SET, the
mode ("pen”) is retained for all subsequent draw operations until changed by a new SET instruction.
(SET includes two further parameters which will be explained at a later date in connection with the
color graphics option.)

The next graphics instruction DOT x,y makes a dot at the specified place. As with all graphics
instructions, the (imaginary) pen is at the end point when the instruction has been executed, which
may then become the start point for the next DRAW instruction.

Filled-in rectangles with vertical and horizontal edges are drawn by means of the AREA instruction.
One corner is indicated by the position of the pen, the opposite corner is given by the xy-coordinates
of the AREA parameters.

The WIDTH instruction determines the fill-in pattern for the rectangles as well as the line type of the
DRAW and POLYGON instructions. Each bit of the 16-bit word set to "1” determines that the dot be
drawn bright. Zeroes |leave the graphics unchanged at the indicated positions. The following example
sets a binary string converted with the BIN function for the line pattern, as this is a particularly clear
kind of representation. As can be clearly seen in the area drawn with the AREA instruction, the
pattern is shifted from line to line.

SR L0 XY
X
X
X
)8
>

AT
SRR
%

10 WIDTH BIN("1111100000111110%)
20 DRAW 200,200
30 AREA 300,300
40 DRAW 600,350

376.1452.00 1.45 E-6

http:376.1452.00

For labelling graphics, the LABEL instruction is required. Labelling starts at the top left corner of the
first letter. The dot pattern of the characters covers an area of 8 x 8 dots, which, with the size indi-
cated, is multiplied with the second parameter of the instruction. Hence, size 1 covers 16 x 16 dots,
size 2 results in 24 x 24 dots and size 3 in 32 x 32 dots. Eight write directions are possible as illustrated
in the example below. Line 110 positions the start points of the strings to a circle with the centre
point 320, 200 and the radius 50.

Dir 2
()

N
941d

100 FOR Dir=0 TO 7
110 MOVE 320+50*COS(PI/4*Dir),200+50*SIN(PI/4*Dir)
120 A$="Dir "+CHRS$(Dir+48)

130 LABEL AS$.2,Dir

140 NEXT

The last draw instruction is POLYLINE. It uses values of an integer field to draw a complete sequence
of lines. This is performed at high speed, because no conversions from user into graphics units are
performed. For this subject, refer to the following section.

1.8.1 Userand Graphics Coordinates
WINDOW and VIEWPORT Instructions

The preceding examples assume that the screen or another graphics output device has 640 x 400
pixels and that the user has a coordinate system with the origin in the bottom left corner and the x-
axis extending to 639 and the y-axis to 399. Actually, the graphics system is initialized when starting
with RUN, however any other (Cartesian) coordinate system can be implemented as well using the
WINDOW instruction. The following example shows a coordinate system with four squares extending
from-1to + 1inthe x-direction and from -1 to + 1 in the y-direction, i.e. the originis in the centre.

376.1452.00 1.46 E-6

4

-1:0 0:0 1:0

100 WINDOW -1.2,1.2,-1.2,-1.2,1.2

105 MOVE 0,0: LABEL "0;07,1

110 MOVE 0,0: DRAW 1,0: LABEL "1:;0",1
120 MOVE 0,0: DRAW 0,1: LABEL "0;1",1
130 MOVE 0,0: DRAW -1,0: LABEL "-1;0",1
140 MOVE 0,0: DRAW 0,-1: LABEL "0;-1",1

Strictly speaking, the coordinate system is specified 20 % larger in the example (up to 1.2) in order for
the drawing to remain within the margins.

As the coordinate system covers the entire display area, the x-axis is longer than the y-axis. This
distortion can be avoided by means of the VIEWPORT instruction. If the preceding example is
extended by

90 VIEWPORT 0,399,0,399

a coordinate system appears on the screen with equally long axes. 240 pixels on the right-hand side
from 399 to 639 are ieft blank. In order to shift the coordinate system to the centre, the following
entry isrequired:

90 VIEWPORT 120,419,0,399

The instructions WINDOW and VIEWPORT apply to all following instructions in the program used for
moving the pen or drawing (except POLYLINE). The picture built up so far is not changed, however.

376.1452.00 1.47 E-6

1.8.2 Graphics Input/Output

The picture visibie on the screen can be transferred to the printer PUD2/3 using the COPYOUT instruc-
tion. If 640 pixels are output on the printer in the vertical direction, the distance between the pixels is
about 10 % smaller in the x-direction than in the y-direction, which is why the picture appears to be
compressed. A maximum of 576 equidistantly spaced pixels is possible (paper format!).Therefore, the
user, if he needs a conformal printout, can use the parameter after COPYOUT to indicate which
edge(s) of the display is (are) to be omitted.

A picture displayed on the screen can as well be transferred to a file using the instruction

100 GSAVE "ABC.PIC".

The pixels are read out from the display memory one after the other, the file using about 32 or 38
Kbytes. A color picture uses even four times that much. By entering

E> COPY ABC.PIC GRAPH

the picture can be transferred back to the graphics device driver and thus be displayed on the screen
again at the operating system level. In BASIC GLOAD "ABC.PIC” is used to bring the picture back to
the screen where it is superimposed on any display aready present there.

The graphics system can as well use other output devices. After starting, a device driver called GRAPH
is loaded as the standard output device for graphics (actually, this is the screen). It is loaded if the file
CONFIG.SYS includes the line DEVICE = GRAPHX.SYS. If the DOP is connected and the associated
driver loaded with DEVICE = DOPX.SYS, the graphics instructions address the plotter. The output is
enabled using the instruction

200 GRAPHIC "DOP"

In order to address the screen again, use the instruction

200 GRAPHIC "GRAPH"

Up to four output devices can be indicated, all of them executing the same draw instructions. A file-
name can also be indicated:

100 GRAPHIC "GRAPH", "ABC.MTF"

The file ABC.MTF is then assigned all draw instructions of the internal format defined as interface to
all graphics units. n. This file can be displayed on the screen using the GLOAD command (GLOAD
fetches the point information of GSAVE and the string commands of the GRAPHIC s$ instruction):

300 SHELL "COPY ABC.MTF GRAPH"

The advantage over the GLOAD, GSAVE instructions lies in the fact that, in particular if only few
graphics objects are involved, the file is only a few bytes long and can build up the display considera-
bly faster.

At the operating system level, this file can also be output on the plotter:

E> COPY ABC.MTF DOP

Parameter /B is required as the file in question is a binary file.

376.1452.00 1.48 E-6

http:376.1452.00

1.8.3 ColorGraphics Option PCA-B3 (PCA) or VGA-, EGA Mode (PSA/PAT)

With the color graphics option, each pixel is not only stored in a display memory which contains only
the information bright or dark, but in 4 planes. Each pixel can assume 42 = 16 values, i.e. one out of
16 colors at a time. A value is not definitely assigned to a particular color, but accesses a look-up table
that can be varied by the user at any time and where a saturation of 0 to 15 can be set for each of the
basic colors red, green and blue. Hence, a total of 16 x 16 x 16 = 4096 (PCA) different color shades are
availabe (but only 16 at a time). (The data for PSA and PAT can be looked up in the SCREEN
instruction described in chapter 2.)

The parameter b of the SET instruction selects the pen to be subsequently used for drawing. The color
of this pen which will then be displayed on the screen is only determined by the COLOR instruction
(see COLOR).

Pens 1, 2, 4 and 8 draw particularly fast because only one bit is set in each of these binary numbers
and only one plane needs therefore be written to. Pen 15 is the slowest. (This does not apply to
PSA/PAT;there all pens draw equally fast.)

If two color areas overlap, e.g. the figures drawn with pens 2 and 4, the overlapping area has the
same color as pen 6. The area where two colors overlap assumes the color which is produced by
logical ORing of the binary numbers of the individual pens.

What has been said so far applies to the non-dominant mode which is set if parameter a of the SET
instruction has the values -1 (inverted drawing), 0 (reset dots) or 1 (set dots). If parameter a has the
value 2, the dominant mode is cut in. The figure drawn assumes exactly the color which corresponds
to the pen; colors drawn first disappear. Thus, all four planes must always be written to which is why
the drawing speed decreases exactly as is the case with pen 15 in the non-dominant mode.

15
Graphics memory }g
(4 planes) 4—/12 1001110001011
11
10
9
8
7
6
S
4
3
2
1
0
Red Green Blue
Color table
T T
Red 0
Screen .
0
1

Green

o
=

1
A
AN
orolol:
A
%

Blue
D/A

] a|lol-
A

Fig. 4-1 Structure of color graphics option (PCA-B3)

376.1452.00 1.49 E-6

The COLOR instruction determines the colors to be assigned to the individual pens. The number for
the pen is followed by the parameter indicating the saturation of the three basic colors red, green
and blue. In order to completely fill the look-up table with new values, 16 COLOR instructions are to
be written. This is not absolutely necessary, however, as the table is filled with meaningful values
following RUN:

The basic colors red, green and blue are assigned to pens 2, 4 and 8 because these pens can draw
particularly fast. Without specification of SET, pen 1 is selected, drawing in white in order to remain
compatible with programs written for black-and-white graphics.

The mixed colors 6, 10, 12 and 14 are assigned to the colors of the subtractive color palette:

red (2) and green (4) result in yellow (6),

red (2) and blue (8) result in magenta (10),

green (4) and blue (8) result in cyan (12) and

red (2), green (4) and blue (8) result in white (14).

The data for PSA/PAT can be looked up in the COLOR instruction described in chapter 2.

The COLOR instruction also permits to define an additive color palette or any other additive color
system. It also applies to what has been drawn before. As the Plotter DOP can only accommodate 8
pens, pen 0 is selected again if 8 is indicated.

A black-and-white printer makes a black dot if any color is set at this position.

The following example illustrates the various possibilities. First, a "circle” subroutine is written using
200 lines to draw a filled-in circle at the position determined by x and y. The values required for this
purpose are calculated only once and stored in the field Cir (line 100 to 160).

in the dominant mode, the overlapping sections are completely overwritten by the color of the circle.

If the three overlapping circles are drawn in the non-dominant mode, the mixed colors are produced.
Note that the area where all the three colors overlap is white.

A printer or plotter will show different mixed colors at the overwritten places. This behaviour is
simulated on the screen by way of changing to an additive color palette.

376.1452.00 1.50 E-6

http:376.1452.00

100 REM ---==---- FILL THE ARRAY FOR THE CIRCLE ROUTINE----------
110 DIM Cir(200)

120 FOR N=0 TO 200

130 Temp=N-100

140 Cir(N)=SQR(10000-TempeTemp)

150 NEXT N

160 PRINT "Eo[2J": REM CLEAR THE ASCII SCREEN

170 REM

180 REM ---=~-~--- MAIN PROGRAMM---= - mmm e mm e e m e oo
185 REM

190 PRINT "WRITING IN DOMINANT MODE USING THE DEFAULT COLOR PALETTE"
200 X=150: Y=350: SET 2,2: GOSUB Circle

210 X=250: Y=350: SET 2,4: GOSUB Circle

220 X=200: Y=275: SET 2,8: GOSUB Circle

230 INPUT "PRESS RETURN TO CONTINUE",f

240 PRINT "Ec[2J"; CLEAR : REM CLEAR ASCII AND GRAPHIC

245 REM

250 PRINT "WRITING IN NON DOMINANT MODE USING THE DEFAULT (SUBTRACTIVE)":
260 PRINT " COLOR PALETTE"

270 X=150: Y=350: SET -1,2:GOSUB Circle

280 X=150: Y=350: SET -1,4:GOSUB Circle

290 X=150: Y=275: SET -1,8:GOSUB Circle

300 INPUT "PRESS RETURN TO CONTINUE",A

310 PRINT "Ec[2J": REM CLEAR ASCII

315 REM)

320 PRINT "NOW CHANGING THE COLOR PALETTE TO AN ADDITIVE ONE"
330 COLOR 6,16,9,0

340 COLOR 10,9,0,9

350 COLOR 12,0,9.5

360 COLOR 14,9,2,2

970 END

980 REM

1000 REM --~==---- DRAW A FILLED CIRCLE AT <X,Y>=-=-----e-emomnoomm—
1010Circle:

1020 FOR N=0 TO 200

MOVE X-Cir(N),Y-N: DRAW X+Cir(N),Y-N
1040 NEXT N

1050 RETURN

1030

376.1452.00 1.51

1.9 General Hints for Programmers

1.9.1 Memory Allocation in BASIC

The available memory of 1 Mbyte (PCA) or 640 KBytes(PSA/PAT) is divided up amongst the operating

system and BASIC as follows:

™M

EPROM

640 KBytes

Program

Variables

Strings

BASIC
interpreter

Ms-DOS

376.1452.00

PCA:16 Kbyte BIOS; PSA/PAT: 32 Kbyte BIOS

vacant for virtual drive and
user routines

1to 16 Kbyte Table for symbolic names

4 to 64 Kbyte BASIC memory

4to 64 Kbyte BASICdata

approx. 30 Kbytes

with device drivers

1.52 E-6

1.9.2

Optimum BASIC Speed

The R&S BASIC has been optimized for maximum operating convenience and high execution speed.
The computing speed is sufficient for all “normal” control tasks and arithmetic operations. The
assembler of the operating system is provided for time-critical parts of program which must operate
many times faster than the BASIC interpreter. Thus convenient and fast subroutines can be written in
machine language and called by BASIC using CALL.

The execution speed of BASIC programs can be considerably increased by observing the following

hints:

® Higher-level instructions are executed more rapidly than if the same function is programmed
using individual instructions.

Example: 10 FOR I = 0 TO 100

20 MOVE I, 0 : DRAW I, 200
30 NEXT

should be replaced by the instruction:

10 MOVE 0,0 : AREA 100, 200

® Time-critical loops should

a)

b)

not contain any instructions which also form part of the program before or after the loop

not contain any REM lines.

® ASCl characters shouid be printed out as soon as a measured or calculated value is present. The
printout of many collected values at once may otherwise fill the input buffer of the printer and
thus produce waiting times for the computer.

® Waiting times, e.g. for measured values or response times, can often be used to process and
display the previous value. If possible, always commence the new measurement and then
evaluate the old one.

® A high data throughput on the IEC bus can also be produced by appropriate programming.

a)

b)

<)

d)

Complex instructions such as |IECOUTa,a$ are executed faster than the corresponding
individual instructions.

If at all possible, instruments with long measuring times or transients of approx. >100 ms
should be programmed such that they signal the presence of a measured value with an SRQ.
BASIC can then fetch the value into a subroutine and process other programs during the
waiting time (see section 1.5.2).

If possible, the instruments should be programmed such that the result can be used for the
controller without further arithmetic or string operations, e.g. the header should be
suppressed or the output made in logarithmic form instead of converting linear values in the
controller.

Slow or non-standard instruments reduce the data transfer rate on the IEC bus. They should
be connected to their own, second IEC bus.

376.1452.00 1.53 E-6

http:376.1452.00

® Data are filed on the hard disk three to ten times as fast as on the floppy drive. In addition, the
run-up time during selection is omitted with the hard disk. The writing of data fields in the RAM
memory is even faster on the virtual drive which can then be recopied completely onto the floppy

or hard disk.

The following section contains a few typical execution times of BASIC functions:

Time per instruction [ms]
PCA speed -
PCA 2/5 PCA 12/15

A=l =0 =0
A = RND (V) 0.49 032
A=U+V 0.39 0.23
A=V=U 0.42 0.25
A=V*U 0.57 0.33
A=V/U 0.90 051
A = SGN (V) 0.20 0.11
A = VANDU 0.45 0.26
A = VORU 0.43 0.26
A = NOTV 0.25 014
A = SIN(U) 6.17 1.92
A = COS(U) 6.19 1.85
A = LOG (U) 5.49 1.58
A = TAN(U) 6.7 1.62
A = ATN (U) 6.2 .72
A=U?TV 18t015.4 04to4
A = SQR (V) 2.2 0.53
A = INT (V) 0.36 0.20
A = ABS (V) 0.20 0.11
A = EXP (V) 9.59 3.34
PRINT U; 3.79 3.49
MOVE 0,0: DRAW U,V(U =50,V = 160) 2.81

MOVE 0,0: AREA U,V(U =40,V = 40) 781

The purely numerical calculations are carried out five to ten times as fast with the numeric data co-

processor compared to the software emulation. This coprocessor cannot be fitted to the PCA 215; it s,

however, fitted to the PCA12/15 as standard and may be fitted to the PSA/PAT as PSAT-B10 option.

376.1452.00

1.54

E-6

p—

http:376.1452.00

1.9.3 Event-controlled Branching

Similar to a real-time operating system, BASIC allows to respond to external events immediately. For
this purpose, a running BASIC program is interrupted and continued after execution of the program
part related to the event.

The instruction

ON <event)> GOSUB <line number or label)>
ON <event> GOTQO <line number or label>

which is to be run through once at the start tells BASIC which program part is to be executed if the
event occurs and that it must respond to the event.

Conversely, the instruction

ON <event> RETURN

prevents BASIC from responding to the event. After running through this instruction, the main
program is not interrupted any more; further branching is enabled again by the next ON <event>
GOSUB/GOTO INSTRUCTION.

Following branching to the subroutine, renewed calling is inhibited even when the event occurs. (ON
<> RETURN is executed internally). This means that the user must explicitely enable renewed
branching with ON <> GOSUB/GOTO. This may be done in the subroutine and should then be the

last instruction before the RETURN statement separated by a colon.

Example: 100 ON SRQ GOSUB 1000
110 REM main program

8380 GOTO 110

1000 REM SRQ subroutine
1010 IEC SPL 12,A%

1100 ON SRQ GOSUB 1000: RETURN

Branching always takes place at the start of a line to be executed in the program. Line 1100 ensures
that branching is enabled and that return to the main program also takes place at any rate. Thus,
illegal nesting is avoided.

376.1452.00 1.55 E-6

1.10 BASIC Device Drivers

a)

For BASIC it is absolutely necessary to have the display and keyboard driver, named CON and
STRIN, containing the screen editor and the program for execution of the ANSI Escape sequences.
When this driver has not been loaded several ESC sequences are displayed on the screen which
are not executed. The driver becomes available if the device driver STRINX.SYS is loaded with
CONFIG.SYS, e.g. by adding the following line to the CONFIG.SYS file

DEVICE=\BASDRVASTRINX.SYS

Note: ANSLSYS and the resident programs SIDEKICK and PROKEY do not run, when the BASIC

device driver CON/STRIN is loaded.

b) For graphics instructions in BASIC the device driver GRAPH is required. it will become available, if

the device driver GRAPHX.SYS is loadad with CONFIG.SYS, e.g. by adding the following line to the
CONFIG.SYS file

DEVICE=\BASDRV\GRAPHX.SYS

Caution: Depending on the hardware the GRAF!C DEVICE DRIVER reserves 24K (CGA), 36K

9]

(Hercules), 116K (EGA) or 130K /VGA) memory space for temporary storage of the
screen editor and alphanumeric display. It may thus occur that there is not enough
memory space for other programs, when the device driver is loaded.

For each IEC instruction the IEC bus driver called IEC is required. It will become available by
loading the device driver IECX.SYS with CONFIG.SYS, i.e. by adding the following line to the
CONFIG.SYS file

DEVICE=\BASDRV\IECX.SYS /A:nnn /D:n /I:n

The information about the setting of the jumpers and switches on the |EC bus board is provided
to the driver by the transfer parameters behind the forward slashes:

/A:nnn indicates the address 2E1default Example /A2B8

/D:n indicates the DMA channel 1 default Example/D3

/l:nindicates the interr. number 7 default Example/I5

Caution: The IEC bus device driver IECX.SYS disturbs the device driver GPIB.COM of

National Instruments, since both drivers access the same hardware. Only the one
or the other driver may be loaded with CONFIG.SYS.

376.1452.00 1.56 E-6

http:GPIB.COM

d) For printing out the graphics display on a printer compatibie to industrial standard (see GSAVE),
the printer driver LPT1 isrequired. It will become available , if the device driver LPTX.SYS is loaded
with CONFIG.SYS, e.g. by adding the following line to the CONFIG.SYS file

DEVICE=\BASDRV\LPTX.SYS

e) The device driver BEEPER is required for generating musical tones using the PLAY instruction. It
will become available by loading the device driver BEPX.SYS with CONFIG.SYS, i.e. by adding the
following line to the CONFIG.SYS file

DEVICE=\BASDRV\BEPX.SYS

376.1452.00 1.57 E-6

2 BASIC Instruction Set

2.1 Definitions of Terms Used

In order to keep the description as clear and intelligible as possible, specific letters are uniformly used
in the syntax definition.

Character Meaning Example
n,m Line numbers (1 to 65.534) 100
t String of characters "Text”
k Numeric constant 1.234
z One-digit constant 2
k% Integer constant (-32768 to 65535) 125
vn Numeric variable) R1
v% integer variable D1%
v$ String variable AS$
v One of the variablesvn, v%, v$ A A%, A%
a,b,cxy Constant, variable or numeric expression 1.2 +(A5*4)
s$ String expression : "VAR" + AS

(string constant, variable or function)

a/s$ Numeric expression a or string expression s$ -—
kit Numeric constant k or string constantc —_
() <> = # Characters belonging to the syntax which must therefore SIN(a)
$: "% ,; be written.

[1 Brackets enclosing a part of the statement. These are
extensions to an instruction which are possibie but not
absolutely necessary.

[The specified extensions may be repeated in the
statement.

376.1452.00 2.1 E-7

http:376.1452.00

characters used as a means of differentiation.

The first character must be a letter. Both upper-case and
lower-case letters may be entered: BASIC always converts the
first letter to upper case and the subsequent letters to lower
case.

Character Meaning Example
Instructions Components of the program are located immediately after a PRINT
line number or a colon. If the instruction is written without a GOTO
line number, it is executed immediately like an instruction
(direct mode).
Graphics statements concern single dot graphics.
IEC statements concern the IEC 625bus.
Commands Cannot be components of a program since they generaily ALOAD
handle programs. NEW
Functions Always possess an argument.
Functions with a subsequent $ character always produce a CHRS$ (10)
character string as resulit (string function). MID$ (AS)
Functions without a subsequent $ character produce a numernc
value as result (numeric function). SIN (A)
Synonyms Notations of an instruction which are accepted as being IECATN
compatible but are automatically converted internally by the IECATT
controller into the new syntax. :
Default values Parameters used in BASIC if no parameters are specified in the |
statement.
Upper-case letters mark keywords which must be entered in this sequence. The
input may be both in upper case and lower case.
Lower-case letters are dummy values for characters or character sequences freely
selectable by the user. (The first letter of the examples is
written in accordance with the German notation)
Variable name is any sequence of letters and digits as well as underline Al1,A2

Langer—name

Labels

are jump targets of the GOTO/GOSUB instructions, the name
establishing the reference. Labels are located after the line
number and end with ":". The definition of the variable name
given above also applies to labels.

100 Unterroutin—nri:

376.1452.00

2.2

E-7

http:376.1452.00

2.2 Summary of the BASIC Instruction Set

Numerical functions and operators

]
]

ABS (a)
INT (a)

SGN (a)
SQR(a)

SIN (a)

COs (a)
TAN (a)
ATN (a)

ath
ERL (a)
ERM (a)
EXP (a)
FRE (0)
FRE (1)
LOG (a)
RND (a)
DEFFN
FN

Program execution

BREAK [OFF]
BYE oder EXIT
CLR

CONT

END

ERASE vg [,v4]
HOLD a

REM

RUN [n]
SHELL [s$]
STOP

TRACE

TRACE a/s$ [,a/s$]...

376.1452.00

Greater than (equal to)
Less than (equal to)
Not equal to, equal to

Relational operations

Boolean operations

Absolute value
Integer

Sign

Square root

Angular functions

Power function

Poll of error line

Error poll

Exponent to base e

Poll of freely available data storage space
Poll of freely available program storage space
Logarithm to base e

Random function

Functions definable by the user

Disable or enabel Break key
Switch from BASIC to the operating system
Set basic status

"~ Program continuation

Program end

Clear variables

Waiting time in ms

Remark

Program start

Invocation of MS-DOS commands
Program stop

Supervision of program run

Program execution in steps with output

23

http:376.1452.00

Pseudo variables

DATES Read out date

DATUMS Read out date (German)

P Circle constant

TIME Measure time or calculate time
TIMES Read out time

Data

DATA k1 [,kz]... Setting of data

DIMv (a; [,a3]...) Array dimensioning

ERASE v Delete of variables and arrays
INKEY v$ Keyboard poll

INPUT $ (n,[#a]) String input with number of characters
INPUT [“t";] v1 [,vn]... Keyboard input

READ v1 [,vpl... Reading in data characters
RESTORE [n] Reset data pointer

Jumps and loops
All GOTOs and GOSUBs may be followed by a line number or a label.

iFaTHEN Structure element (over severalblines)
ELSE

ENDIF

FORvn=aTODb[STEPc] Loops

NEXT [vn]

IFa THEN...[ELSE] Conditional branch

GOTO Unconditional jump

GOSUB Jump into subroutine

ON COMa GOTO Enable jump upon end-of-file character in interface
ON COMa GOSUB Jump into subroutine

ON ERROR GOTO Enable jump in case of error

ON ERROR GOSUB Jump into subroutine
ONaGOTOnNn[,m]... Jump depending on a
ONaGOSUBNn|[,m]...

ON KEY GOTO Enable jump upon Keystroke

ON KEY GOSUB

ON TIME a GOTO Enable jump at a given time

ON TIME a GOSUB

ONSRQGOTOn Enable jump upon Service Request
ON SRQ GOSUB

RETURN [a] Return from subroutine

REPEAT Loop structure (over several lines)
UNTILa Condition at the end

WHILE a Loop structure (over several lines)
WEND Condition at the beginning

376.1452.00 24

http:376.1452.00

Character string processing

ASC (s$
BIN (s$)
BINS (a)

CHR$ (a)

HEX (s%$)
HEXS$ (a)

LEN (s$)

LEFT$ (s$,a)

MID$ (s$,a,b)

+

RIGHTS$ (s$,a)

STRS (a[,USING s$])
VAL (s$)

Editinstructions

AUTO [n] [,An]
DELETE n-m
DIR[t]

FRE (Q)

FRE (1)

HELP [arg]
IECLISTON a
JECLIST OFF
LIST [n] [-[m]]
PLIST [n] [-[m]]
NEW
RENUMBER [n]
{-m]] [,n] [.An]
SEARCH [n-m,] t
SOFTKEY
REPLACE [n-m] ti,t5

Machine instructions -

CALLa [,V1]
CALL# a [V1]
INP (a)

LOAD# a, s$
OUTa,b
PASCAL a[,v4]...
PEEK (a)
POKEa, b

SEGMENT a oder DEF

VARPTR (v)

376.1452.00

Conversion of ASCII character into numeric value

Conversion of binary numbers and decimal numbers

Conversion of numeric value into ASCli character

Conversion of hexadecimal and decimal numbers

Length of a string

Separate first characters from string
Remove middle characters from string
Linking of character strings

Separate last characters from string
Conversion of numeric variable into a string
Conversion of a string into numeric variable

Automatic line numbering
Delete lines

Output directory
Available memory space

Select and display support information texts
Qutput program on IEC bus

Termination of program output on IEC bus
Program output on screen

Program output on 1st printer interface
Delete program

Renumbering of lines

Search text lines
Restore softkey labelling
Replace parts of text

Machine program call

Call machine routine

Read via addresses

Load machine routines
Output via addresses

Call Pascal routines

Read memory location
Write into memory location
Fix a segment

Read in a variable pointer

2.5

E-7

http:376.1452.00

Input/output via floppy disk, fixed disk and interfaces

ALOAD "t” Load program stored in ASCI| code

ASAVE "t Save program in ASClI code

CHAIN s$,m Reload program sections

CLOSE# [a] [.a]... Close file

FORM [m-n] Set page format of printer

INPUT $ (a, [#a]) String input with number of characters

INPUT#a, vq [,v3]... Load data

LOAD s$ [,R] Load program

OPENI#a,s$ Open input file

OPENO#a,s$ Open output file

OPENI#a," CON: Input/output on console

OPENI#a,”"COMb: input/output on V24/RS232

OPENI#a,"|EC: Input/output on IEC bus

OPENI#a,"LPT1: Input/output on printer

PLAY s$ [,a] Signal tone with pitch and duration in s$ and repetition rate given by
parameter a

PRINT#a, a/s$ Store data

PRINT a/s$ Screen output

PRINT USING Formatted output

SAVE s$ [,P] Store program

TAB (a) Distance form left edge of screen

Graphics instructions

AREA x, y Draw filled in rectangies
CLEAR Clear graphic display
COLORf,r,g,b Color assignment
COPYOUT (a] Output graphics to printer
DOT x,y Draw dot

DRAW x,y Draw line

GLOAD s$ Load screen from file
GRAPHICs$,[,s$] Select graphics interface
GSAVE s$ Store screenin file

INVERT Invert graphic display
LABEL s$[,a [,b [,c]]] Labelling of graphics
MOVE x, y Position cursor

RMOVE x, y Position cursor relative
POLYLINE a,v%(b) Draw polyline

RDRAW x, y Draw line relative

SCREEN a Fixing screen mode

SET a[,b] [,¢] Display mode for lines and dots
VIEWPORT x1,x2,y1,y2 Fixing display area of screen
WIDTH a Draw line pattern
WINDOW x1,x2,y1,y2 Fixing coordinate range
ZOOM a Enlargement and selection of display area

376.1452.00 2.6 E-7

http:376.1452.00

W

IEC-bus instructions

a) Universal instructions

IEC DCL
IECLLO

IEC SPE
IECSPD

IEC PPE k1 k
IEC PPL v%
IEC PPU
IECPPD

IEC TIME a
IECT1b

IEC REN

IEC NREN
IECIFC
IECATN
IECNATN
IECEOI

IEC NEOI

ON SRQ GOSUB n
ON SRQ RETURN
IECTERM a
IECRLC
IECRQS

b) Addressed instructions

IECLAD a
IECTAD a
IECSAD a
IECUNL

IECMTA (IECUNT)
IEC SDC

IEC GTL

IEC GET (IEC GXT)
IECPCON b, k,k>
IEC PPC

IECTCT
IECOUT a; [;az] ,s$(;]
IEC$OUT s$

IEC % OUT a%
IECIN a, [;a;],v$
IECS$IN v$

IEC %IN v%
IECSPL a, v%
IECADRa
IECWMTA

IEC WMLA
IECWTCT
IECLISTON a

IEC LISTOFF

376.1452.00

Device clear

Local Lockout

Serial Poll enable

Serial Poll disable
Parallel Poll enable
Status reply

Parallel Poll unconfigure
Parallel Poll disable

Set time-out monitor
Settime T1

REN line active

REN line passive
Transmit IFC

ATN line active

ATN line passive

Output terminator with EQI
Output terminator without EOI
Jumpon SRQ

Inhibit jump upon SRQ
Define input terminator
Release control

Send service request

Transmit listener address

Transmit talker address

Transmit secondary address
Transmit unlisten

Transmit untalk

Selected device clear

Goto Local

Group execute trigger

Parallel Poll configure

Parallel Poli configure

Take Control

Transmit character string

Output character string without address
Output individual character

Read in data

Enter character string without address
Enter character without address
Serial Poll

Assign address

Wait for talker address

Wait for listener address

Wait for takeover of control

Switch on parallel output on [EC bus
Switch off parallel output on IEC bus

2.7

http:376.1452.00

23 BASIC Instructions in Alphabetical Order

Numeric function

Absolute Value Function
Purpose: In order to use the magnitude of a number for further calculation, the sign can be
suppressed using the ABS function.

Math.: x = /x/

Syntax: ABS(a)

a: constant, variable or numeric expression

Example: 100 A=ABS(B)

376.1452.00 2.8 E-7

http:376.1452.00

This page has been kept free on purpose. The BASIC instruction of an option may be inserted here.
The sheets to be inserted are found in the manual of the respective option.

376.1452.00 2.9 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related

commands:

Example:

Possible
error message:

376.1452.00

Command

Loading of Programs Stored in ASCIl Code

This command loads a program in ASCIl characters, produced e.g. by means of

ASAVE, from floppy disk or fixed disk into the main memory. The syntax is checked

at the same time. Program lines present in the main memory are only overwritten if

these lines are also used in the program to be loaded. This command cannot be

used in a program.

ALOAD 'progrém name”

Program name, also with drive and search path)

By use of this command programs can be combined or added to. The line numbers
of programs loaded consecutively must, however, match with one another.

ASAVE, LOAD, CHAIN

Load the ASCIl program TEST.ASC from the default drive
ALOAD "TEST.ASC"
Load the ASCII program TEST.ASC from the fixed disk drive

ALOAD "E:TEST.ASC"
ALOAD "E:\USER\TEST.ASC"

Any.error messages which would also be produced if this program were entered via
the keyboard are also displayed in the status line. The lines with errors are not
transferred to the program.

Since ALOAD tests the syntax and pre-compilation takes place, an ALOAD of very
long programs may take several minutes.

2.10 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

376.1452.00

Instruction

Access to Analog I/O Interface
This instruction is used to address the analog interface option PCA-B13.

[n] ANG a IN s$,v
ANG a OUT s$,b

n: line number, also including label

a: numberof interface (1 to 3)

s$: string expression for setting the interface

v: numeric variable in which the value is entered
b: numeric expression for the value transferred

This instruction is explained in greater detail in the manual of the option. It also
contains pages which may be added at a later date in this part of the BASIC manual.

2.1 E-7

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

376.1452.00

Graphics Instruction

Draw Filled-in Rectangles

The AREA instruction is suitable for selecting the graphic background of parts of
the screen or, e.g., for drawing tolerance limits for adjustments.

[n] AREA x,y

n: line number, also including label
X,y: numeric expressions for the x,y coordinates of the target point

This instruction draws a rectangular area on the screen. All points within the
rectangle are bright, dark or inverted depending on the operating mode selected
using the SET instruction. The WIDTH instruction determines the filling-in pattern.
The coordinates are determined in a manner similar to the DRAW command, i.e.
the starting point is determined by the coordinates x; and y; of the graphic cursor
and the target point is determined by the absolute coordinates of the AREA
instruction. [

X2

y2

Y1

X1

Note that the filling of areas is hardware-based and the CPU time used corresponds
to that of the DRAW command.

MOVE, RMOVE, WIDTH, SET, COLOR
100 MOVE 200,0
110 AREA 250,50

draws a filled-in square

2.12 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related

Funktion:

Example:

376.1452.00

Function

Conversion of Characters into ASCIl Values

Characters are processed in ASCIl code in BASIC, i.e. a value between 0 and 255 is
assigned to each character. The numeric value is obtained using the ASC function.

ASC(s$)
s$: character string or character string constant

The numeric value of the first character of the character string is determined in
each case (see also ASCIi table).

CHRS$

100 A=ASC("A")
110 PRINT A

Display: 65

Branch if A$ begins with A

200 IEC IN 30,AS$:IF ASC(A$)=65 THEN 300

2.13 E-7

http:376.1452.00

Purpose:

Syntax:

Related
command:

Example:

Possible

error message:

376.1452.00

Command

Saving Programs in ASCIl Code

This command is used to save a program in ASCIl code on the floppy disk or hard
disk so that the program can be processed using editor programs. This command
cannot be used in a program.

ASAVE [n] [-[m]] "program name”

Program name, also with drive and search path

ASAVE n-m Save fromlinentolinem

ASAVE n- Save from line m to end of program

ASAVE -m Save from beginning of program to line m
ASAVE n Save line n

ALOAD, SAVE

Saving the BASIC program as an ASCII file on the default drive
ASAVE "TEST.ASC"
Saving the BASIC program on the hard disk

ASAVE "E:TEST.ASC"
ASAVE "E:\USER\TEST.ASC"

The corresponding error messages will be output if the floppy disk is incorrectly
inserted or write protected.

2.14 E-7

http:376.1452.00

Purpose:

Syntax:
Related

function:

Example:

Note:

376.1452.00

Numeric function

Arc Tangent Function

This generates the inverted tangent function.

Math.: y =arctanx

ATN(a)

a: constant, variable or numeric expression
TAN

100 Y=ATN(X)
The inverted function arc sine may be easily calculated from this.

Math.:

x
arcsinx = arctan (—)

V1-22'

100 Y=ATN(X/SQR(1-X12))

The arc cosine function is calcuiated in a similar manner.

Math.:

arccosx = arc tan

)

100 Y=ATN(SQR(1-X12)/X)

The ATN function presents the result in radians. It is easily convertible into degrees or
centesimal degrees by inverting the calculation specified for sine function.

2.15 E-7

http:376.1452.00

Command

Automatic Line Numbering

Purpose: Line numbers are generated by BASIC using this command; they need not be
entered by the programmer. The first line number appears immediately after the
command has been entered, each further line number appears when the Return
key is pressed. Automatic line numbering is terminated by pressing the Break key.

Syntax: AUTO [n] [,An]

n: firstline number
An: incrementsize

Remarks: Permissible line number range: 1 to 65534
A default value of 10 is inserted for both parameters if no values are specified for n
or An.

Example: Automatic line numbering from line 100 with a stepwidth of 15
AUTO 100, 15

376.1452.00 2.16 E-7

http:376.1452.00

Purpose:

Syntax:

Related
functions:

Example:

Note:

376.1452.00

Numeric function

Conversion of Binary Number into Decimal Number

The BIN function can be used to convert a string of 0 and 1 (binary number) into an
integer.

BIN(sS)

s$: String with 1 to 16 characters containing only 0 and 1.
BINS, HEXS$, HEX

100 A=BIN ("11111110")

110 PRINT A

Display: 254

The most significant character of a 16-digit number is interpreted as the sign.

2.17 E-7

http:376.1452.00

Purpose:

Syntax:

Related
functions:

Example:

Note:

376.1452.00

String function

Conversion of Decimal Number into Binary Number

The BINS function can be used to convert an integer into a string (as 16-digit binary

number).

BINS$(a)

a: number between-32 768...32 767 (65 535)

BIN, HEX, HEXS$

100 AS=BINS$(254)
110 PRINT AS

Display: 0000000011111110

With negative numbers, the most significant character is set to 1 and the two's

complement is formed.

2.18

E-7

http:376.1452.00

Purpose:

Syntax:

Purpose:

Syntax:

Example:

376.1452.00

Instruction

Inhibit or Enable BREAK Key

A BASIC program run can be stopped at any time using the BREAK key. It is
sometimes necessary to make this key inoperable (e.g. to avoid maloperations).

[n] BREAK Off

n: line number, also including label
The following statement is used to enable the BREAK key function again:

[n] BREAK
n: line number, also including label

This mode is also switched on by RUN.

100 BREAK Off
110 REM Protected Program

200 BREAK
210 REM Break-key active

2.19 E-7

Purpose:

Syntax:

Synonym:

Remarks:

Related

instructions:

376.1452.00

Instruction

Return from BASIC to MS-DOS

BASIC is terminated using this instruction and the control returned to the operating
system.

[n] BYE

n: line number, also including label

EXIT

BYE may be executed both in direct mode and also under program control. The
operating system subsequently signals. .
If a BASIC program has been executed in an operating system batch file, the next

instruction of the batch file is executed following BYE. In this manner BASIC sub-
routines can be incorporated into batch files and linked with other programs.

SHELL, EXIT

2.20 . E-7

http:376.1452.00

Purpose:

Syntax:

Related
instructions:

Example:

Note:

376.1452.00

Instruction

Call an External (Machine) Routine

This instruction calls an external (machine) routine which starts at address a (offset)
(observe segment determination using SEGMENT a). The pointers for the variables
are transferred to the routine in the stack. First, the offset is filed in the stack and
then the segment. The external routine is terminated by a RETURN instruction
(return far/ RETF).

[n] CALL a [,vny]...
n: line number, also including label

a: address (offset of routine)
vni: numeric variable

SEGMENT, POKE, CALL#

Call a subroutine in which only RETF is present

10 SEGMENT 4000
20 POKE 1000,HEX("CB")
30 CALL 1000

Errors in the called machine routine usually lead to a status which can only be
eliminated by RESET (see Section "Incorporation of Assembler Subroutines in BASIC
Programs").

2.21 E-7

http:376.1452.00

Instruction

Call an External (Machine) Routine

Purpose: Call of routine loaded with LOAD#. The number a establishes the relationship
between these two instructions. The pointers for the variables are transferred to
the routine in the stack. First, the offset is filed in the stack and then the segment.
The external routine is terminated by a RETURN instruction (return far/RETF).

Syntax: [n] CALL# a [,vni]
n: line number, also including label
a: link number, mathematical expression with vaiue 1 to 7

vn,: variable
(See Section 1.4.4 and 1.6)

Related
instructions: LOAD#, CALL

376.1452.00 2.22 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related
instructions:

376.1452.00

Instruction

Loading of Program Sections

For reloading programs into the main memory under program control and for
joining programs together. In contrast to the LOAD instruction, all variables are
retained and a line number can be specified up to which the program is to be
retained in the memory.

[n] CHAIN s$.m

n: line number, also including label
m: line number from which the program is to be deleted
s$: program name, possibly with drive and search path

The CHAIN instruction may be executed in direct mode from the keyboard and also
under program control. The program lines m in the memory are deleted and the
specified program is loaded from drive t. The specified program must not contain
any line numbers <m.

Under program control it must also be ensured that m is larger than the line
number of the called CHAIN instruction since otherwise the BASIC program cannot
be continued. The memory space available may become limited since all variables
of all subroutines are retained. In this case it is recommendable to delete variables
using CLR or ERASE.

LOAD, ALOAD

2.23 E-7

Example:

Possible

error message:

Reason:

Possible

error message:

Reason:

376.1452.00

Overlay technique with subroutines

100 REM Main program

500 CHAIN "SuB1.BAS",1000: GOSUB 1000

600 CHAIN "E:SUB2.BAS",1000: GOSUB 1000

700 CHAIN "SUB3.BAS",2000: GOSUB 2000

999 END
1000 REM Subroutines (SUB1, SUB2)
2000 REM Subroutine (SUB3)

ERROR 36: lines nested

The first line number in the program to be loaded is smaller than or equal to the
last line number of the program present in the memory.

ERROR 45: CHAIN line erase

An attempt was made to delete the line of the calling CHAIN instruction using a
parameter m which was too small.

2.24 E-7

http:376.1452.00

Purpose:

Syntax:

Example:

Related
Funktion:

Example:

Possible
error message:

Reason:

376.1452.00

String function

Conversion of Numbers into ASCII Characters

The CHR$ function is the inversion of the ASC function. The characters can be
determined from the numeric values of the ASCII code.

CHRS$(a)

a: number between 0 and 255

100 A$=CHR$(C*A-5)

ASC
Development of an ASCII table
100 FOR I=1 TO 127

110 PRINT CHR$(I),I
120 NEXT

ERROR 40: "parameter too large”

The permissible range for the parameter a between 0 and 255 has been exceeded.

2.25 E-7

http:376.1452.00

Graphics instruction

Clear Graphics
Purpose: This instruction is used to clear the graphics on the screen (PCA). For PSA and PAT
this instruction also deletes alphanumeric characters.The parameters set are not
reset.
Syntax: [n] CLEAR
n: line number, also including label
~
v
-
376.1452.00 2.26

E-7

CLOSE#

Purpose:

Syntax:

Related
instructions:

Example:

Possible

error message:

Reason:

Possible

error message:

Reason:

Note:

376.1452.00

Instruction

Close a File

The instruction CLOSE# serves for the purpose of closing down a file on the floppy
disk or fixed disk or terminating a data exchange via an interface.

Each file should be closed as soon as the read or write operation has been carried
out in order to prevent the maximum possible number of 15 simultaneously open
files from being exceeded and to prevent an open file from being inadvertently
opened again in the case of programs with loops or branches.

[n] CLOSE#[a]l[.a]...

n: line number, also including label

a: channel number (1 to 15)
(if ais notindicated, all open files are closed)

OPENI#, OPENO#, INPUT#, PRINT#, INPUTS()

File 2 is closed:

100 CLOSE#2

ERROR 51: "DOS close error”
An attempt has been made to close a file although no floppy disk has been

inserted.

ERROR 50 "file not open”

An attempt has been made to close a file which has not been opened.

The name of a file will only be stored on the floppy disk or fixed disk if the file is
properly closed down with CLOSE#.

2.27 E-7

Purpose:

Syntax:

Remarks:

Related

instructions:

376.1452.00

Instruction

Setting the Initial State of BASIC

The instruction CLR resets BASIC to the state following the RUN command. This may
be necessary in the case of long programs which are continuously running or
restarting.

[n] CLR

n: line number, also including label

The instruction CLR clears all variables including units and sets them to 0. All FOR-
NEXT loops and GOSUB returns are set to the state following the RUN command.
Opened files are closed down. RESTORE instruction is issued and the graphics are
deleted.

ERASE, CLEAR

2.28 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

376.1452.00

Instruction

Color Assignment

The color graphics option PCA-B3 (or EGA and VGA mode for PSA/PAT) has 4
memories (planes) for determining the color of each dot. 16 colors can thus be
displayed simuitaneously. The SET instruction determines the pen to be
subsequently used for drawing (see SET). The color of the pen which will then be
displayed on the screen is determined by the COLOR instruction. This color also
applies to what has been drawn before.

[n] COLOR f,r,g,b

line number, also including label
pen 0to 15 (255")

red portion 0 to 16 (647) 0:
green portion 0 to 16 (64")
blue portion 0 to 16 (64*)

without color
16: max. color

ga 3

*) Look up the values in the SCREEN instruction

After starting the program with RUN, the look-up table has the following values:

Color
Pen red green blue Remark
PCA PSA/PAT

0 0 0 0 black black background

1 16 16 16 white light grey

2 16 0 0 red red

3 0 0 6 dark blue light red

4 0 16 0 green green

S 0 6 0 dark green light green

6 16 16 0 yellow brown red-green
7 6 6 0 brown yellow

8 0 0 16 blue blue

9 6 0 10 dark red light blue

10 16 0 16 magenta magenta red-blue
1 16 6 0 orange light magenta

12 0 16 16 cyan cyan green-blue
13 4 1 0 dark brown light cyan

14 16 16 16 white grey

15 4 4 4 grey white

This table assigns the basic colors red, green and blue to pens 2, 4 and 8, because
these pens draw particularly fast.

The mixed colors 6, 10, 12 and 14 correspond to the colors of the subtractive color

palette. The COLOR instruction also allows to define an additive color palette or
any other color system.

2.29 E-7

Related
instructions:

Example:

Note:

376.1452.00

SET, SCREEN, WIDTH

To give an impression of what is possible, the following program draws
overlapping filled in circles.

5 REM DEFINE VALUES FOR DRAW CIRCLE ROUTINE

10 DIM T(200)

20 FOR N=0 TO 200

30 M=N-100

40 T(N)=SQR(10000-M*M)

50 NEXT N

60 PRINT "Ec[2J": REM CLEAR ASCII SCREEN, CURSOR HOME
70 PRINT "WRITING IN DOMINANT MODE USING THE DEFAULT COLOR PALETTE"
80 X=150: Y=350: SET 2,2

90 GOSUB 320

100 X=250: Y=350: SET 2,4

110 GOSUB 320

120 X=200: Y=275: SET 2,8

130 GOSUB 320

140 INPUT "PRESS <RETURN> TO CONTINUE",A

150 PRINT "Ec[2J": CLEAR :

160 PRINT *WRITING IN NON-DOMINANT MODE USING THE DEFAULT (SUBTRACTIVE)";
170 PRINT "COLOR PALETTE"

180 X=150: Y=350: SET 1,2

190 GOSUB 320

200 X=250: Y=350: SET 1,4

210 GOSUB 320

220 X=200: Y=275: SET 1,8

230 GOSUB 320

240 INPUT "PRESS <RETURN> TO CONTINUE",A

250 PRINT "Ec[2J"

260 PRINT "NOW CHANGING THE COLOR PALETTE TO AN ADDITIVE ONE"
270 COLOR 6,16,9,0

280 COLOR 10,9,0,9

290 COLOR 12,0,9,5

300 COLOR 14,9,2,2

310 END

320 REM SUBROUTINE TO DRAW A CIRCLE

330 FOR N=0 TO 200

340 MOVE X-T(N),Y-N: DRAW X+T(N),Y-N

350 NEXT N :

360 RETURN

This instruction only works with the option PCA-B3 fitted in the controliers PCA2
and PCA12 or, in case of PSA and PAT, with external VGA/EGA compatible color
monitor.

2.30 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related
instructions:

Possible
error message:

Reason:

376.1452.00

Command

Program Continuation

If a program has been stopped using STOP instruction or the interrupt key, e.g. in
order to read a variable, it can be continued using the CONT instruction.

CONT

The program is continued in the line in which it was interrupted. The program and
variable are not affected thereby.

STOP, TRACE

ERROR 43: "can't continue"

Program abort with error message or modification of program.

2.31 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Note:

376.1452.00

Graphics Instruction

Output of Screen Graphics on the Printer

The COPYOUT instruction allows the output of the graphics visible on the screen on
the PUD2/3. (Output of the graphics with a graphics printer compatible to
industrial standard is effected with GSAVE “LPT1”.)

[n] COPYOUT [a]

n: line number, also including label
a: screen column where printing of the graphics is started (0 to 63)

The printout may be made either 1:1 (without parameter) or to scale (with
parameter). With a 1:1 printout, the complete graphics display is output on the
PUD 2/3. The printout appears to be.compressed in the horizontal direction by
approx. 10%. If the printout is made to scale, only 576 of the 640 screen columns
can be output. Parameter s determines the column where printing of the graphics
display is started.

Other areas of the graphics memory, which comprises more than 3 complete
pictures, are first made visible on the screen by means of MOVE and ZOOM before
they can be printed out.

ZOOM, GSAVE "LPT1"

100 COPYOUT :REM 1:1 printout not to scale
110 COPYOUT O :REM scale printout left-aligned
120 COPYOUT 63:REM scale printout right-aligned

Z00OM has no effect on the size of the output. The complete screen is always
output.

With the color-graphics option, each colour point set produces a black point on the
printout.

2.32 E-7

http:376.1452.00

Numeric function

Cosine Function

Purpose: This generates the cosine value of the argument in a manner similar to the sine
function. The argument is to be indicated in radian measure.

Syntax: C0S(a)

a: constant, variable or numeric expression

Related
Functions: SIN, TAN, ATN, PI
Example: 100 A=COS(X + 0.5)

376.1452.00 2.33 E-7

Purpose:

Syntax:

Remarks:

Related

instructions:

Example:

376.1452.00

Instruction

Writing of Data

The DATA instruction is suitable for writing data or string constants in the program
which are then to be read during program execution by means of the READ
instruction.

[n] DATA ki[. k2]

n: line number, also including label

k: constant or character string constant

The data are entered in sequence at any position in the program following the
DATA instruction and are separated by commas. They can then be read into the
variable in sequence using READ.

If more data are present than space available in one line, they can be written in the
subsequent line following another DATA instruction.

The character string constant must be enclosed by quotation marks if it is to contain
acomma or a colon.

READ, RESTORE

100 DATA 15.3,20,-17.4
200 DATA "FREQ:",KHZ,LAENGE,O,3M,3MM

300 READ A,B,C,AS$
320 READ BS
400 PRINT AS$;A;BS

Output: FREQ: 15.3KHZ

2.34 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related
variables:

Example:

376.1452.00

Pseudo variable

Readout of Date

The DATES variable is used to read the date into a character string variable.

DATES

The assignment of DATE$ to a character string variable results in a string with 8
characters of the form: mm-dd-yy.

mm = month
dd = day
yy = year

The date is set at the operating system level using the instruction DATE.
If the option PCA-B10 (real-time clock) is fitted, the date is obtained therefrom.

The year is set in the operating system using MODE:CLOCK:year.

DATUMS, TIME, TIMES

100 A$=DATES

2.35 E-7

http:376.1452.00

DATUMS |

Purpose:

Syntax:

Remarks:

Related
variables:

Example:

376.1452.00

Pseudo variable

Reading of Date
(German Notation)

The DATUMS$ variable is used to read the date in German notation into a string
variable.

DATUMS

The assignment of DATUMS$ into a string variable results in a string with 8
characters in the form:

tt-mm-3j.
tt = day
mm = month
i = year

The date is available at the operating system level using the DATE instruction.
The date is obtained from the option PCA-B10 (real-time clock) if present.

The year is set in the operating system using MODE CLOCK:year.

DATES, TIME, TIMES

100 A$=DATUMS

2.36 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related
function:

Example:

376.1452.00

Numeric function (definition)

User-definable Function

To enable user to define a function. This is particularly useful if the formula used is
very long or if it is frequently called up in the program.

[n] DEF FN t(vn)= a

n: line number, also including label

t: function name

vn: numeric variable upon which the function depends

a: mathematical expression which may contain vn

The expression a usually also contains the transferred variable vn. This variable is
assigned its original value after being called, but expression a is calculated with the
value transferred as parameter vn.

Several functions with different names can be defined in the program.

The function with the same name can be defined several times and the last
definition before calling is valid.

FN

100 DEF FN T(X)=14®X T 2+2°X
200 Y = FN T(A)

237 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related

instructions:

Example:

NOtE;

376.1452.00

Command

Deletion of Program Lines

The DELETE command is suitable for deleting existing lines or sections in the
program.

DELETE [n] [-[m]]

DELETE n-m delete from line n to line m

DELETEn- delete from line n to end of program

DELETE-m delete from start of program to line m
DELETEn deletelinen

Individual lines may also be deleted by entering the line number and pressing the
Return key (enter an empty line).

NEW

Delete program lines 100 to 200

DELETE 100-200

If a line number specified in the DELETE command does not exist, the range
between the indicated line numbers will be deleted. If the specified line numbers
exist, they will be deleted as well.

2.38 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related
instruction:

Example:

Possible
error message:

Reason:

Note:

376.1452.00

Instruction

Array Dimensioning

An array must first be dimensioned with respect to type and size before it can be
used. The DIM statement is used to this end.

[n] DIM v(ai [.az]...)

n: line number, also including label
v: numeric or character string variable, also further variables, separated by
comma

a;: highestindex which limits the field size (also variable or expression)
The controller then reserves a;+ 1 or (a;+ 1) (a2 + 1)... memory locations for the

dimensioned array. The array elements are simultaneously filled with 0 in the case
of numeric variables and with the empty word in the case of character strings.

ERASE

100 DIM A(28)

200 DIM Cx%(14)

300 DIM A1$(F)

350 DIM Integer_field%(Dim_1), String_field(Dim_2)
muiti-dimensional arrays:

400 DIM AS$(I,14)

500 DIM B(K+12,I2,4/A%)
600 DIM Field(10,10,10), measured values (number, rows)

ERROR 20: "redimensioned array”

Array has already been dimensioned. This prevents a data array from being
deleted by new dimensioning.

Several arrays to be dimensioned are separated by commas in the DIM instruction.

2.39 E-7

http:Field(lO,lO.lO
http:376.1452.00

Purpose:

Syntax:

Remarks:

Related

instructions:

Example:

376.1452.00

Command

Output of Directory

Similar to the DIR command of the operating system, the DIR command in BASIC
outputs the directory of the floppy disk or fixed disk onto the screen.

DIR [filename]

Filename, also with drive and search path

Just as under the operating system, filenames and pathnames can be specified. The
jokers ? and * in the BASIC DIR command replace characters or character groups.
Five filenames per line are output on the screen.

SHELL

DIR
DIR *.BAS
DIR A:\USER\ *.*

2.40 E-7

http:376.1452.00

Graphics instruction

Drawing of Dots

Syntax: [n] DOT x,y

n: line number, also including label
X,y: numeric expressions for the x/y coordinates

Remarks: The instruction draws a dot whose location is determined by the coordinate x and
Y.

Related

instructions: MOVE, RMOVE, SET, DRAW, RDRAW

Example: 100 FOR A=0 TO 2°*PI STEP .0314

110 X=95*COS(A)

120 Y=95*SIN(A)

130 DOT 160+X, 100+Y
140 NEXT

A circle comprising dots is drawn using the following example. The centre point has

the coordinates x= 160 and y = 100. The radius corresponds to the distance of 95
dots.

376.1452.00 2.41 E-7

http:376.1452.00

Syntax:

Remarks:

Related

instructions:

Example:

Note:

376.1452.00

Graphics-Instruction

Drawing of Lines

[n] DRAW x,y

n: line number, also with label
x,y: numeric expressions for the x/y coordinates of the target point

This instruction draws a visible line on the screen which ends at the point of inter-
section of the x and y coordinates.

The starting point of the line must be determined before this instruction is used for
the first time. This is carried out using the instruction MOVE or DOT. Further DRAW
instructions can then follow in the program. Lines are then joined together. Each
new DRAW instruction draws a new line which ends at the x and y values of this
instruction and restarts where the line .of the previous instruction has stopped.

RDRAW, MOVE, RMOVE, POLYLINE, SET, WIDTH

Two crossed lines are drawn on the screen using the following example.

100 MOVE 110,50

110 DRAW 210,150 5
120 MOVE 210,50

130 DRAW 110,150

Drawing outside the screen coordinates leads to the overwriting of the video
memory.

2.42 E-7

4

http:376.1452.00

Purpose:

Syntax:

Related
instructions:

Note:

Possible

error message:

Reason:

376.1452.00

Instruction (structure element)

Marking the ELSE Branch of the IF Instruction
Marks the beginning of the ELSE branch from an IF-THEN/end of line instruction to
ENDIF line block.
See IF instruction (syntax 3:)
See ENDIF instruction
[n] ELSE
n: line number, also including label
IF THEN, ENDIF
The keyword ELSE may as well be part of an IF line and will then follow the
keyword THEN.
See IF instruction (syntax 2:)

Error48: "no IF-struc., [ELSE], ENDIF match"”

No IF-THEN/end of line instruction active of ENDIF not suitable.

243 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related
instruction:

Example:

376.1452.00

Instruction

Program End

The END instruction may but need not be at the end of a program. It causes the
program to hait and stops the controller from continuing with the subsequent
subroutines at the end of the main program. Thus it avoids the occurrence of error
messages.

[n] END

n: line number, also including label

The program is stopped with the END statement without changing the variables
and the controller signals READY.

The END instruction may be used several times in a program which may be useful
e.g. with program branching.

STOP

1000 END

244 E-7

http:376.1452.00

Instruction (structure element)

Purpose: Marks the end of the line block begun with the IF-THEN/end of line instruction.
See IF instruction (syntax 3:)

See ELSE instruction

Syntax: n ENDIF

n: line number, also including label

Related
instructions: IF THEN, ELSE

Possible
error message: Error 48: "no IF -struc., [ELSE], ENDIF match”

Reason: No IF-THEN/end of line instruction active.

376.1452.00 2.45 E-7

Purpose:

Syntax:

Remarks:

Related
Function:

Example:

376.1452.00

Instruction

Clearing Variables
The ERASE instruction is used to clear variables, especially in dimensioned arrays.
[n] ERASE vgq [,vi1]...
n: line number, also including label

vi: variable to be cleared

ERASE clears the variable or the variable field with the name v. The value in
brackets serves as a dummy value. The memory location occupied by the variables
will then be available again for use as required. It is, however, not available for
strings. Thus, deleting a string array creates storage space for the pointers. The
space occupied by the string is, however, not available again.

DIM, CLR

100 ERASE A(0),BS,A%(0)

2.46 E-7

http:376.1452.00

Purpose:

Syntax:

‘ Related

function:

376.1452.00

Function

Reading of Error Line

This function may be used to determine the number of a faulty line. This is useful

e.g. for debugging in a subroutine called using ON ERROR GOSUB.

ERL(a)

a: dummy value, any value

ERM, ON ERROR

2.47

E-7

Purpose:

Syntax:

Remarks:

Related

functions:

Example:

376.1452.00

Function

Reading the Error Number

This function checks the error status of the controller. This is useful for example for
the evaluation of an error in a subroutine called up by ON ERROR GOSUB.

ERM(a)

a: Dummy value, any value

The error status is normally 0. ERM(a) assigns a value between 1 and 76 if an error
occurs. The associated error messages are described in Section 3.

ERL, ON ERROR

Detecting a time-out on the IEC bus:

100 ON ERROR GOSUB 1000
110 IECOUT 28,7123~

1000 A=ERM (0)

1010 IF A=10 THEN PRINT "TIME OUT"
1020 ON ERROR GOSUB 1000

1030 RETURN

2.48 E-7

http:376.1452.00

Purpose:

Syntax:

Synonym:

Remarks:

Related

instructions:

376.1452.00

Instruction

Return from BASIC to MS-DOS

BASIC is terminated using this instruction and the control returned to the
operating system.

[n] EXIT
n: linenumber, alsoincluding label
BYE

EXIT may be executed both in direct mode and also under program control. The
operating system subsequently signals.

If a BASIC program has been executed in an operating system batch file, the next
instruction of the batch file is executed following EXIT. In this manner, BASIC
subroutines are incorporated into batch files and linked with other programs.

SHELL, BYE

2.49 E-7

http:376.1452.00

Purpose:

Syntax:

Related
function:

Example:

Possible

error message:

Reason:

376.1452.00

Numeric Function

Exponential Function

The exponential function works with base e.

Math.: y = ex

EXP(a)

a: constant, variable or numeric expression
LOG

180 Y=EXP(X)

200 PRINT EXP(2)

Result: 7.389056098931

ERROR 31: "numeric overflow"”

Exponent too large

2.50

E-7

Purpose:

Syntax:

Remarks:

Related
functions:

Example:

Possible
error message:

Reason:

376.1452.00

T

Numeric function (call)

User-definable Function

The function, once defined, may be called as often as required at different
positions in the program either directly or by the program and is still in store at the
end of the program.

FN vn(a)
vn: function name

a: argument whose function is to be calculated

It must be ensured that the first call in the program is not present before the
definition. Variables used for the calculation retain their value assigned to them.

DEF FN

The hyperbolic sine function

Math:

100 DEF FN Sh(X)=(EXP(X)-EXP(-X))/2
200 Y=FN Sh(.8)

The function is first defined and then called, where y is assigned the sine hyperbolic
0.8.

ERROR 47: "undefined Function"”

Called function has not yet been defined.

2.51 E-7

http:functi.on
http:376.1452.00

" FOR (STEP, NEXT)

Purpose:

Syntax:

Remarks:

Example:

376.1452.00

FOR (STEP, NEXT)

Instruction

Loops

In many applications, a program loop is executed with different values of a
variable.

n FOR vn = a TO b [STEP c]
m NEXT [vn] [,vn]...

n: firstline in the loop, also including label

m: lastlinein the loop, also including label

vn: floating point variable

a: initial value (constant, variable or numeric expression)

b: final value (constant, variable or numeric expression)

¢: increment size (constant, variable or numeric expression). The increment will
be set to 1if STEP is not specified.

The controller sets the loop variable vn equal to a when the execution of the
instruction starts. The loop variable is increased by the increment ¢ each time the
NEXT statement is performed and the loop between n and m executed again. This
process is repeated until the variable vn becomes larger than the final value b and
the program located after m is then processed. The loop is executed once in any
case. After termination of the loop, the variable vn has the value b + c.

The loop variable need not be specified in the NEXT instruction. Contrary to the
general definition of variable names, the loop variable vn may contain up to 16
characters (letters, digits, underline characters). FOR-NEXT loops may be nested
max. 22-fold and contain other structure elements as well.

100 FOR A=1 TO 10
120 NEXT

2.52 E-7

Purpose:

Syntax:

Syntax:

Related
commands:

Example:

376.1452.00

Command

Producing Page Format for Printer

An upper and lower margin is produced for all outputs on the printer PUD. A form
feed is also executed prior to all printer outputs (PLIST, COPYOUT und
OPENO#a,"LPTb:")
FORM [m - n]
m: first line to be printed
n: lastline to be printed

(max. 66 in the case of 11" paper)

(max. 72 in the case of 12" paper)

The parameters are omitted in order to switch off this function.

FORM

This function is switched off after the BASIC interpreter has been loaded.

PLIST, COPYOUT, OPENO LPT

FORM 12-61

2.53 E-7

http:376.1452.00

Purpose:

Syntax:

Example:

Remarks:

376.1452.00

Numeric function

Freely Available Memory Locations

Each character and each instruction of a program requires a memory location.
The longer a BASIC program, the smaller the originally available memory location.

If information on the available memory locations is required during programming,
the function FRE(1) is used.

Data used during execution of the program, i.e. strings and numerical values, also
require memory locations. These are filed in their own memory segment.

The memory locations available for data are read out using FRE(0).

FRE (a)

a=1: free program memory

a=0: freedata memory

Output the available memory space for the program:

PRINT FRE(1)

Output the available memory space for the data:

PRINT FRE(0)

If possible 64 k are reserved for the program and the data when the BASIC
interpreter is loaded. If the available memory is smailer it will be divided up at a

ratio of 4:4:1 for labels. The memory polled with FRE () is slightly smaller because
part of the memory is internally used by BASIC.

2.54 E-7

http:376.1452.00

Purpose:

Syntax:

Related
instructions:

Example:

Note:

376.1452.00

Instruction

Load Graphics from File

Graphics drawn on the screen can be stored in a file on the floppy disk or hard disk
using the GSAVE instruction. With the GRAPHIC instruction the information about
what is to be drawn can be stored in a file. GLOAD is used to bring both formats
back to the screen again.

[n] GLOAD s$

n: line number, also including label
s$: filename, also with drive and search path

GSAVE, LOAD, GRAPHIC
100 GLOAD "A:\USER\TEST.BLD"

If there is already a graphics display on the screen, both pictures will be super-
imposed following GLOAD. In order to prevent this, the CLEAR instruction may be
used to clear the screen prior to loading.

The graphics is always loaded into the part of the graphics memory currently visible

on the screen. Note that a further part of the graphics memory can also be made
visible using ZOOM.

2.55 E-7

http:376.1452.00

Instruction

Branch to a Subroutine

Purpose: In order to arrange BASIC programs as clearly as possible, frequently used sections
of larger programs should be used as subroutines and inserted at the required
positions in the program. This arrangement saves both memory space and program
writing.

Syntax: [n] GOSUB m
[n] GOSUB marker

n: line number, also including label
m: 1st line of the subroutine label
label: any sequence consisting of letters, digits and underline characters

Remarks: The program jumps to the first line of the subroutine with the GOSUB statement
and returns to the next instruction after the GOSUB statement once it has been
processed (see RETURN). Another subroutine can be called within the first
subroutine. Up to 22 subroutines may be nested in this manner.

If GOSUB is not followed by a line number but by a character sequence starting
with a letter, BASIC searches for the line of this label. Note that this label directly
follows a line number and must end with a colon.

Related
instructions: RETURN, GOTO, ON GOSUB
Example: 100 GOSUB1000

1000 REM SUBROUTINE
1010 RETURN

or

100 GOSUB SUBROUTINE
1000 SUBROUTINE: PRINT A

1100 RETURN

376.1452.00 2.56 E-7

http:376.11452.00

R
Instruction
Jump to a New Line Number or Label
Purpose: The GOTO statement is used to jump to a new line number in the program and to
continue execution from there.
Syntax: [n] GOTO m
[n] GOTO mark
n: line number, also including label
m: line number to be jumped to label
S label: any character sequence consisting of letters, digits and underline characters
Related
instructions: GOSUB, ON GOTO, IF
Example: 100 GOT0300
200 REM SKIPPED PROGRAM
300 REM JUMP ADDRESS
or
100 GOTO Not.set
200 REM
300 Not_set:
possible

| - error message: ERROR 25: "undefined line”
Reason: The line jumped to does not exist.
Note: Direct entry of the GOTO statement is used to continue the program at another

position without deleting the variables as in the case of RUN.

The program must not be modified, e.g. by entering new lines. In this case,
undefined errors are produced after GOTO n.

376.1452.00 2.57 E-7

http:376.1452.00

_ GRAPHIC

Purpose:

Syntax:

Related
instructions:

Example:

Note:

376.1452.00

“GRAPHIC

Instruction

Graphics Output on Interfaces or Files

The graphics instructions permit to draw not only on the screen but for example
also on the connected plotter DOP. Besides, the information to be drawn can be
stored in files. GLOAD brings the drawing back to the screen again.

[n] GRAPHIC s$ [, sn$]...

n: line number, also including label

s$: ontto a max. of 4 character strings of the names of the interfaces or files, also
with drive and search path

GLOAD,GSAVE, COPYOUT

GRAPHIC "GRAPH" Output on screen; this is initialised by RUN

100 GRAPHIC "GRAPH", "DOP" Graphics are drawn both on the screen and the plotter at
the same time

200 GRAPHIC "DAT.MTF" A file of graphics objects is produced

The file or interface is opened using this procedure. Data are transferred using the
following graphics instructions. The file is not closed, i.e. finally recorded, until the
END instruction or the maximum line number have been reached.

if another GRAPHIC instruction follows, the open files will be closed as well, also in
the case of RUN, because some files might still be open due to an interruption in
the previous program run.

If a file is specified as output unit, it will be filled with data which may then be
further copied by MS-DOS using the COPY command. The file DAT.HTF produced in
the example above can be output on the screen by means of

COPY/B DAT.MTF GRAPH

or transferred via the loaded device driver DOPX.SYS to the connected plotter DOP
by means of

COPY/B DAT.MTF DOP.

The parameter IB is required because the file has binary values.

2.58 E-7

http:376.1452.00

Purpose:

Syntax:

Example:

Related
instructions:

Remarks:

376.1452.00

Instruction

Saving Screen Graphics in a File or Output on a Printer

A graphics drawn on the screen can be stored: point by point in a file on the floppy
disk or hard disk using this instruction. GLOAD is used to bring it back to the screen
again.

If the printer interface LPT1 (and PRN, resp.) or LPT2 are indicated as output file,
the point information will be transmitted to a connected IBM Graphics printer (or
compatible printer) and printed.

For the printer of type PUD2/3 the COPYOUT instruction is used to this end.
[n] GSAVE s$
n: line number, also including label -

s$: filename, also with drive and search path

100 GSAVE "A:\USER\TEST.BLD"

GLOAD. COPYQUT, ZOOM, GRAPHIC

The part of the graphics memory currently visible on the screen is always saved.
Note that a further part of the graphics memory can also be made visible using
ZOOM.

2.59 E-7

http:376.1452.00

Command

Call of HELP Program

Purpose: The HELP°program displays support information texts, which similar to the BASIC ma-
nual further specify all instructions, functions and commands, on the screen.
The contents output on the screen prior to calling of the HELP program is regained
when the HELP program is left again.

Syntax: HELP[arg; [args ... [arg,]]...]

Remarks: Following calling of the HELP program without indications of arguments, the support
information required is provided for the user via help menues.
If arguments are supplied when starting the program, the support information select-

ed is immediately indicated. The arguments may be abbreviated as long as they prove
umambiguous.

Related
command: SHELL

Example: HELP
HELP PRINT or
HELP PR
Note: The HELP program is installed on the hard disk according to data file HELP.DOC with

installation program HINST.BAT containing auxiliary text information in German or
English. The programs are on the system floppy disk.

376.1452.00 2.60 E-7

http:376.1452.00

Purpose:

Syntax:

Related
functions:

Example:

Note:

376.1452.00

Numeric function

Conversion of Hexadecimal Numbers into Decimal Numbers

A hexadecimal number can be processed as a decimal number using the function
HEX.
HEX(s$)

s$: hexadecimal character string consisting of 0 to 9 or A to F in the range
between 0 and FFFF

HEX$, BIN, BINS

100 PRINT HEX("2F3A"™)

Display: 12090

It should be noted that hexadecimal numbers greater than 7FFF exceed the limit of
32767 according to the definition of integer variables so that the next higher value
begins again at the bottom end of the range, i.e. at -32767. FFFF then corresponds
to the decimal value -1, i.e. a decimal value of 65536 must always be added when
converting hexadecimal numbers larger than 7FFF.

2.61 E-7

http:376.1452.00

String function

Conversion of Decimal Numbers into Hexadecimal Numbers

Purpose: A decimal number can be converted into a hexadecimal number using the function
HEXS.
Syntax: HEXS$(a)

a: number -32768 to 32767 (65535)

Related
functions: HEX, BINS, BIN
Example: 100 PRINT HEX$(64000)

Display: Fa00

110 A$=HEX$(Numvar)

376.1452.00 2.62 E-7

http:376.1452.00

HOLD

Purpose:

Syntax:

Remarks:

Example:

Note:.

Related
function:

376.1452.00

Instruction

Waiting Time
The HOLD statement can be used to stop a program for a specific period.
[n] HOLD a
n: line number, also including label

a: waitingtimeinms

The waiting time may be a constant, a variable or an arithmetic expression but
must be in the range from -32768 to 65535.

100 HOLD C=300

The waiting time is realized by a software loop. Tolerances are in the range of
approx. *20%. A more accurate waiting time can be realized by working with the
TIME-Pseudo variable. :

TIME

2.63 E-7

http:376.1452.00

ADR IECADR
: IEC DR i SRR 1'1f-'-'J'EIT‘:"L»:’:’?»; J
IEC instruction
Assignment of an IEC-bus Address
Purpose: The controller usually has the system control and does therefore not require its
own |EC-bus address. However, if several controllers are connected to the bus, each
must have an address just like IEC bus devices. The controiler can then respond
when its address is called. The IECADR instruction is used to assign this address.
Syntax: [n] IEC[z]ADR b
n: line number, also including label
2: numberof the IEC bus 1 or 2, default value 1 -’
b: 1EC address 0 to 31, initialized 31
Remarks: The IECADR instruction has a function similar to setting of the IEC address on
devices using a DIP switch. The assignment is made simultaneously for the talker
and listener address. The address may be changed during program execution.
Example: Reading in of IECOUT10,"DATA"
90 IEC TERM 13: IEC TIME 1000
100 IEC RLC
110 IEC ADR 10
120 IEC $IN AS:PRINT AS
Display: DATA
-
~

376.1452.00 2.64 E-7

http:376.1452.00

IECATN

S~
Purpose:
- Syntax:
Synonym:
Possible

error message:

- Reason:

376.1452.00

IEC instructions

Line Messages

The controller provides the facility for also controlling the management lines via
BASIC instructions (except the [ine "SRQ" which is not controlied by the controller).
However, this will be necessary only with special programming functions, however,
since the controller automatically controls the management bus with all IEC
instructions as prescribed in the standard.

Line ATN informs all the connected interfaces that the information contained on
the data bus has to be considered (IEC Command).

Line message

[n] IEC[z]ATN Line "ATN" active.

[n] IEC[z]NATN Line "ATN" passive.

n: line number, also including label

z: numberof IECbus 1or 2, default 1

IEC[a]ATT
IEC[a]NATT

not an [EC-bus controller

IECATN may only be transmitted if the computer is the controller (not
talker/listener).

2.65 E-7

http:376.1452.00

'| E 2

Purpose:

Syntax:

Remarks:

Example:

376.1452.00

IEC instruction

Device Clear

The instruction sets all devices into a basic status (defined by the manufacturer) and
should be used before each new use of the bus and at the start of a program.

[n] IEC[z]DCL

n: line number, also including abel
z: number of IEC bus 1 or 2, default 1

The instruction outputs the control character 20 (decimal) together with ATN.

100 IEC DCL

2.66 E-7

b

Purpose:

Syntax:

Remarks:

Example:

376.1452.00

IEC instruction

Definition of the Output Delimiter with/without EOI

This instruction can be used during the output of data to select whether the last
character in a string is transmitted with or without the line message EOI.

[n]IEC[z]EOI
[n]IEC[z]NEOI

n: line number, also including label
z: number of the IEC bus 1 or 2, default 1
Default: with EOI

The last character of each OUT instruction is transmitted with EO! {(low = true)
following entry of IEC EOl or the program start. If the OUT statement contains only
one byte (e.g. IEC % OUT), this is transmitted together with EOI. If one or more
delimiters follow the character string (e.g. IEC OUT 10,A$), only the last delimiter is
transmitted together with EOL.

The EOI line is not serviced following the IEC NEOI statement and remains inactive

until reactivated with IECEOL.

100 IEC EQI
110 IEC OUT 4,"FE 14":REM LF with EOI
120 IEC OUT 4,7CS 32";:REM 2 with EOI

200 IEC NEOI
220 TEC OUT 4,"AC 36":REM without EOI

2.67 E-7

IEC GET

IEC instruction

Group Execute Trigger

Purpose: Operation is triggered in the addressed device or in a group of devices by the IEC
GET statement. This is important for time-critical sequences.

If, for example, the charging curve of a capacitor is to be recorded, the voltage

source, the voltmeter and a plotter can be started simultaneously using IEC GET.
Syntax: [n] IEC[z]GET

n: line number, also including label

z: numberof IECbus 1 or 2, default 2

Synonym: IEC GXT

Remarks: The statement outputs the control character 8 (decimal) together with ATN. The
devices to be triggered must first be addressed as listeners before executing GET.

Example: 100 IEC LAD 4,LAD 7,LAD 11
110 IEC GET

376.1452.00 2.68 E-7

http:376.1452.00

IE
R S
Syntax:
Remarks:
-
-
W

376.1452.00

TL

IECG

IEC instruction

Go to Local

[n] IEC[z]GTL
n: line number, also including label

z: number of IEC bus 1 or 2, defauit 1

The addressed devices can be manually serviced again following this statement.
The effect of this instruction is terminated by addressing the device again as a
listener. The lockout of the remote control (see IEC LLO) is also disabled at the same
time.

The statement outputs control character 1 together with ATN.

2.69 E-7

IEC instruction

Line Messages

Purpose: Only the system controller may activate line IFC and thus reset all the interfaces
connected to the bus into their basic status.

Syntax: Line message
[n] IEC[z]IFC IFCline <100 ps (about 1 m) active
n: line number, also including label

z: number of IEC bus 1 or 2, defauit 1

Remarks: IECIFC may be transmitted only if the instrument is the controller.

Possible

error: IFC does not go low (true).

Possible ;

reason: Jumper not plugged in on system controller (see also Section on IEC bus operation

preparations)

376.1452.00 2.70 E-7

http:376.1452.00

Syntax:

Remarks:

Example:

376.1452.00

IEC instruction

Input of Strings with Addressing

[n] IEC[z]IN aq [: az]., v§

n: line number, also including label

z: number of IEC bus 1 or 2, default 1

a;: talker address (0 to 31) *)

ap: secondary address (0 to 31) *)

v$: characterstring variable into which the data is read.

The individual steps of the instruction are:

a) Addressing of device with talker address a. (TADa)

b) Asecondary address (a) is transmitted if specified. (SADa)

¢) Transmission of own listener address. (UNL)

d) Reading-in of datain "v$" up to the delimiter according to IECTERM.
e) Deaddressing of talker (MTA). .

100 IEC TERM 13
110 IEC TIME 20
120 v=6

300 IEC IN V,U$
330 PRINT U$

100: Delimiter "CR" for end of data.
110: 20 ms time-out for handshake.
300: Data are read into U$ by the talker with address 6.

- 330: The read-in data are output on the screen.

*) Decimal value of bits by to bs

2N E-7

IECSIN

Syntax:

Syntax:

Remarks:

Example:

Note:

376.1452.00

IEC instruction

Input of String Variables or Integers without Addressing

As controller and talker/listener:
[n] IEC[z]SIN, v§

n: line number, also including label
z: number of IEC bus 1 or 2, default 1
v$: string variable to be read into

Input of a single character:
[n] IEC[z]%IN, v%

n: line number, also including label
Z: number of IEC bus 1 or 2, default
v%: fixed-point variable to be read into

The computer can only act as a listener in the two instructions. The characters are
received if a talker has been addressed before or a device operates in ‘talk only'
mode.

When the computer has released control it will as talker/listener receive the
information with these instructions.

Read-in of a byte from the device with address 6:

100 IEC TERM 13
110 IEC TIME 20
120 V=6

300 IEC TAD V
310 IEC %IN U% 320 IEC MTA
330 PRINT U% i &

Read-in of all data up to delimiter CR from a 'talk only' device:
100 IEC TERM 13

120 IEC SIN AS
140 PRINT AS$

When a running program is aborted with BREAK while a talker is sending data, a
restart will only be possible if the instructions IEC DCL and IEC IFC are executed at
the beginning of the program.

2.72 E-7

http:376.1452.00

IEC instruction

Addressing of Devices as Listener

Syntax: [n] IEC[2]LAD b

n: line number, also including label
2: number of IECbus 1 or 2, default 1
b: address (0to 31) (decimal value of bits by to bg of IEC address)

Remarks: Devices addressed as listeners accept data from the |IEC bus. Several listeners can be
addressed simultaneously so that the same information can be transferred
simultaneously to several devices.

The address b is always specified as the decimal value of address bitsb; to bs of the
data bus. In line with the standard, the same listener and talker addresses may be
assigned to a device. In this case bits by to bs of the address are identical.

The statement outputs the listener addresses 32 to 63 (decimal) together with ATN.

376.1452.00 2.73 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Note:

376.1452.00

IEC instruction

Local Lockout

This instruction is used to inhibit the manual operation of all devices. Even the key
"Go to local” usually present on the device is no longer effective. The instruction is
used to protect against manual maloperations during IEC-controlled sequences.

[n] IEC[z]LLO

n: line number, also including label

z: number of IEC bus 1 or 2, default 1

The instruction can be reset as follows:

a) Only temporarily (up to next addressing as listener) with

IEC zLAD b and IEC zGTL

b) Completely with
IEC zNREN and IEC zREN

The statement outputs the control character 17 (decimal) together with ATN.

Resetting requires that the interface functions on the devices are in line with the
standard. This is not always the case. Some devices (contrary to the standard) still
accept manual controi after IEC DCL.

274 E-7

http:376.1452.00

ECLISTON
ECLISTOFF

Purpose:

Syntax:

Remarks:

Example:

Note:

376.1452.00

IECLISTON
EC LISTOFF

IEC instruction

Parallel Outputon the IEC Bus

The instruction IEC LISTON outputs the screen contents onto the {EC bus. It is useful
for example in outputting to an IEC-bus printer or in the case of program or data
transfer to another processor.

[n] IEC[z]LISTON b
[n] IEC[z]LISTOFF
n: line number, also including label

z: Numberof IECbus 1 or 2, default 1
b: address of output devices (0 to 31)

Output to the IEC bus will be continued until the instruction IEC LISTOFF is
executed. Subsequently, PRINT, INPUT and LIST are output only on the screen.

The LISTOFF instruction deaddresses the listener with UNL.

Transfer of the BASIC program to a printer with the IEC address 10:

IEC LISTON 10
LIST
IEC LISTOFF

At the beginning of a listing (command LIST) the Escape sequence “Ec[x” is
transmitted, which for example informs the connected printer that the following
Escape sequences should not be executed but included in the listing.

2.75 E-7

http:376.1452.00

Purpose:

Syntax:

Synonym:

Remarks:

376.1452.00

IEC instruction

Deaddressing of Devices

If a different device or a different group of devices is to be addressed, the
previously addressed devices must be deaddressed.

[n] IEC[z]MTA Deaddressing of the talker
[n] IEC UNT
n: line number, also including label

z: number of IEC bus 1 or 2, default 1

The statement outputs the control character of the own talker address together
with ATN. The own address is set by the IEC ADR instruction, the default value is the
talker address 31 corresponding to the decimal character 95 (decimal).

2.76 E-7

IEC instruction

Output of Strings with Addressing

Syntax: [n] IEC[2]OUT ay [:a2] . s$ [:] (full instruction)
n: line number, also including label
z: number of IEC bus 1 or 2, default 1
ai: listener address (0 to 31) *)
a;: secondary address (0 to 31)*)
s$: data to be output

.-

CR, LF is transmitted if the semicolon or the comma is missing.

The individual steps of the instruction are:

a) Address device with listener address a. (LADa)
b) Asecondaryaddress (a) is transmitted if it has been specified. (SADa)
¢) Transmission of own talker address (MTA)
d) Transmission of character string s$, possibly with EQOI (see IEC EOI) at the last
character
e) Deaddressing of device (UNL).
Note: A delimiter should generally be transmitted with this data output with which the

listener recognizes the end of the data output. The manual for the device description
indicates the delimiter to which the device responds. The ASCli characters LF or CR and
LF are commonly used. . : :

*) Decimal value of bits by to bg

376.1452.00

2.77 E-7

* IEESOUT
| IEC %0UT

Syntax:

Syntax:

Remarks:

Example:

Note:

376.1452.00

IEC instruction

Output of String Variables without Addressing

As controller and talker/listener:
[n] IEC[2]$OUT s$

n: line number, also including label
z: number of IEC bus 1 or 2, default 1
s$: character string to be output

Output of a single character:
[n] IEC[2]%OUT b

z: number of IEC bus 1 or 2, default 1
b: numerical expression (0 to 255) for the character to be output.

The device can only act as a talker with both instructions. It sends either the string
variable s alone or a single character which has the decimal equivalent b. Characters
may only be sent to previously addressed listeners.

When the computer has released control it will as talker/listener transmit the
information with these instructions.

Output of bytes to a device with the address 6:

50 IEC NEOI

100 N$="NO"

110 IEC LAD 6

120 IEC $OUT "A1J1"+N$
130 IEC %0UT 13

140 IEC UNL

100: String variable N$ receives the content NO.
110: Device with the address 6 addressed as listener
120: String variable "A1J1NO" sent.

130: Delimiter CR sent

140: Unlisten

If BASIC is in the status of active controller with these instructions, the controller will
first transmit its own talker address (MTA).

The last byte of the string variable may be transmitted with EOI (see IEC EOI).

2.78 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

376.1452.00

IEC instruction

Parallel Poll Configure

This instruction replaces the instructions IEC [a] LAD b, PPC, PPE k;, k>, UNL (see
there and Section "“Parallel Poll").

[n] IEC[z]PCON b, ki, k2

n: line number, alsoincluding label
z: |ECbusnumber 1or 2, default 1
b: address(0to 31)

ky: sensebit(Sb,Qor1)

k;: 1to8 = DIO1 to DIO8 as reply line

IEC-bus compatible devices may be equipped with the capability of registering
their status on one of the eight data bus lines DIO1 to DIO8. Up to eight devices can
participate in this parallel poll, each device being assigned its own DIO line.

2.79 E-7

Syntax:

Remarks:

Note:

376.1452.00

IEC instruction

Parallel Poll Configure
[n] IEC[2]PPC
n: line number, also including label

2: number of IEC bus 1 or 2, default 1

IEC-bus-compatible devices can be equipped with the capability of signalling their
device status on one of the eight data bus lines DIO1 to DIO8. Up to eight devices
can participate in this paraliel poll, a single DIO line being assigned to each device.

The IEC PPC instruction initiates an instruction sequence which determines the
allocation of the device to the data bus lines.

The instruction outputs the control character 5 (decimal) together with ATN.

Execution of a parallel poll is described in Section 1.

2.80 E-7

IECPPD

Purpose:

Syntax:

Remarks:

Note:

Related
instructions:

376.1452.00

IEC instruction

Parallel Poll Disable

This instruction terminates the polling of only these devices currently addressed as
listeners.

[n] IEC[z]PPD (parallel pol!l disable)
n: line number, also including label
z: number of IEC bus 1 or 2, default 1

The statement outputs the control character 112 (decimal) together with ATN.

The execution of a parallel poll is described in Section 1.

IEC PPL, IEC PPC, IEC PPE, IEC PPY, IEC PCON

2.81 E-7

http:376.1452.00

IEC instruction

Parallel Poll Enable

Purpose: This instruction determines on which DIO line the device is to reply in the case of
parallel poll and whether this line is 0 or 1. The figure k; is assigned to one of the 8
lines and k; may invert the active status 0 or 1 determined by the manufacturer.

Syntax: [r] IEC[2]PPE ky k2
n: line number, also including label
z: number of IEC bus 1 or 2, defauit 1

ki: sensebit(0or1)
kz: 1to8 = DIO1 to DIO8 as the reply line

Example: 100 IEC PPE 14

Line 4 is assigned.

376.1452.00 2.82 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

376.1452.00

IEC instruction

Triggering of Parallel Poll

Following execution of the IEC PPL instruction, all devices previously set for polling’
with IEC PPC and IEC PPE will transmit their status reply.

[n] IEC[z]PPL v% (status reply)

n: line number, aiso including label

z: number of IEC bus 1 or 2, default 1
v%: integer variable into which the status reply of all devices is entered.

This instruction simultaneously sends the messages EO! and ATN and reads the
status word on the bus into the variable v%.

2.83 E-7

http:376.1452.00

IEC instruction

Parallel Poll Unconfigure

Purpose: The parallel poll is a way of checking by the controller whether the connected
devices are ready. A specific instruction sequence is necessary which is described in
Section 1. The parallel poll status of all devices is terminated by the universal
instruction IECPPU.

Syntax: [n] IEC[z]PPU
n: line number, also including label
z: numberof IECbus 1 or 2, default 1

Remarks: This universal instruction terminates the capability of all devices to reply to a

parallel poll. A new setting may be subsequently made if necessary.

The statement outputs the control character 21 (decimal) together with ATN.

376.1452.00 2.84 E-7

http:376.1452.00

IECREN

Purpose:

Syntax:

Remarks:

Possible
error:

Possible
reason:

376.1452.00

IEC instructionen

Line Messages

The controller provides the facility for also controlling the management lines via
BASIC instructions (except the line "SRQ" which is not controlied by the controller).
This, however, is only necessary with special programming functions, since the
PCAS automatically controls the management bus with all IEC instructions as
prescribed in the standard.

The line message REN permits to operate the connected devices via the IEC bus.
However, the device will enter the 'remote mode’ only following its receiving a
listener address.

Line message

[n] IEC[z]REN Line "REN" active.

[n] IEC[z]NREN Line "REN" passive.

n: line number, also including label

z: number of IEC bus 1 or 2, default 1

IEC REN may only be transmitted if the controller-has the system control.
REN does not go low (true)

lumper not plugged in on system controller.

2.85 E-7

http:376.1452.00

IECRLC

Purpose:

Syntax:

Remarks:

Possible
error message:

Reason:

376.1452.00

IEC instruction

Release of Control

If several controllers are to be operated on one bus, only one of them may have the
bus control at a time. The first IEC statement of all other controllers must be IECRLC
(release control). The computer will then be a talker/listener on the bus once the
instruction has been executed.

[n]IEC[2]RLC
n: line number, also including label
z: number of IEC bus 1 or 2, default 1

default value or no data: 1

All stored IEC parameters are deleted.by a software reset with IEC RLC and are
subsequently reentered. Transmission of IFC and REN is prohibited following IEC RLC
and leads to the corresponding error messages.

not an IEC-bus controller

The computer has already been talker/listener

2.86 E-7

http:376.1452.00

IECRQS

IEC instruction

Send Service Request

Purpose: if the computer has given up the control of the bus with IEC RLC, it may as talker/
listener send a service request at any time calling for service from the controller.
The service request may be used for example to obtain control again.

Syntax: [n]IEC[z]RQS b

n: line number, also including label
z: number of IECbus 1 or 2, default 1
b: status variable to be output to the bus during serial poll 1 to 255

Remarks: During the execution of the IEC RQS instruction, the SRQ line of the management
bus is at first set to low (i.e. true). On the appearance of an SRQ, the controller
carries out a serial poll. With the controller being addressed as a talker in the serial
poll, it issues the status variable b to the bus. Bit7 (dec. 64), i.e. RQS message, is
high. The controller cancels the service request only after the status byte has been
read. The SRQ line goes high as long as no service request is raised by another
device. If no service request is found in the serial poll of the controller, bit 7 (RQS) is
set to low.

If a service request is detected in the parallel poll of the controller, the assigned bit

for the parallel poll reply is set high.Correspondingly, this bit is set to low when no
service request is found.

Example: Send service request
IEC RLC, ADR 11, RQS 10
Request return of control

100 IECRLC.ADR(15)

500 IECRQS(15)
510 IECWTCT

Possible
error message: nota IEC-bus talker/listener

Reason: The computer has the control of the bus and therefore cannot send an SRQ.

Note: The cancellation of the SRQ message is performed in line with the laid down
standard only for serial poll and not for parallel poll.

376.1452.00 2.87 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

376.1452.00

IEC instruction

Secondary Addressing of Devices

Transmission of a secondary address (associated listener or talker must already have
been addressed).

[n] IEC[z]SAD b
n: line number, also including label

z: number of IECbus 1 or 2, default 1
b: address (0to 31) (decimal value of bits b; to bs or IEC address)

-
Secondary addresses may be transmitted to both listeners as well as talkers which
the devices can then interpret on their own. The device functions defined by the
manufacturer can thus be activated in devices equipped with this function.
This statement outputs the control characters 96 to 127 (decimal) together with
ATN.
-
—

2.88 E-7

[EC instruction

Selected Device Clear

Purpose: The instruction sets the addressed listeners into the basic status (as determined by
the manufacturer).

Syntax: [n]IEC[2]SDC
n: line number, also including |label

z: number of IEC bus 1 or 2, default 1

Remarks: This statement outputs the control character 4 (decimal) together with ATN.

376.1452.00 2.89 E-7

http:376.1452.00

IEC SET

IEC instruction

Setting the Device Characteristics

Purpose: The waiting time of the time control, the input terminator, the setting or son-
setting of the EOI line and the output terminator are device specific.

The IEC instruction determines the address and thus the peripheral device these
characteristics are valid for, which are then stored in the device driver. All following
inputs/outputs , carried out using the IEC IN and IEC OUT instructions e.g., use these

parameters.
Syntax: [n] IEC[2]SET a,b,c,d
n: line number, also including label
z: number of IEC bus 1 or 2, default 1
a: talker/listener address 0 to 31 (see.lEC LAD, TAD, IN, OUT)
b: time-out monitor 0,1 to 32767 (see IEC TIME)
¢: inputterminator 0,1,2 to 255 (see IEC TERM)
d: output terminator without (with) EOI 0 (1) (see IEC EOI)
Remarks: These characteristics are set for all following IEC inputs/outputs using the
instructions IECTIME
IECTERM
IEC (N) EOL.

WHEN the IEC SET instruction is used these characteristics only apply for one
defined address. For all addresses not defined by IEC SET the parameters set with
the IEC TIME, TERM, EOI instructions are still valid.

Assignment of all 31 addresses is possible, (however, max. 15 devices may be
connected) thus enabling a clear description of the device characteristics in the
program.

Example: IEC SET 8,1000.1,1
IEC SET Uds,1000,1,1 ‘1 sec timeout
' EOI for EOS on input only
'EOI with last character on output

376.1452.00 2.90 E-7

http:376.1452.00

IEC SPD

Purpose:

Syntax:

Remarks:

376.1452.00

IEC instruction

Serial Poll Disable

This instruction terminates the serial poll. The devices will then reply with their
associated data and no longer with their status byte.

[n] IEC[z]SPD (serial poll disable)
n: line number, also including label

z: number of IECbus 1 or 2, default 1

This statement outputs the control character 25 (decimal) together with ATN.

2.91 E-7

http:376.1452.00

" |EC SPE

IEC instruction

Serial Poll Enable

Purpose: This instruction initiates a serial poll. All devices equipped with this function will
then reply with their status byte after being addressed as a talker (with IEC TAD a).
The data is entered into the controller with IEC %IN v%. The addressing and data
inputs are repeated until all devices have been polled.

Syntax: [n]IEC[2]SPE
n: line number, also including label
z: number of IEC bus 1 or 2, default 1
Remarks: This statement outputs the control character 24 (decimal) together with ATN.

376.1452.00 2.92 E-7

http:376.1452.00

Purpose:

Syntax:

Note:

376.1452.00

IEC instruction

Serial Poll

- The serial poll of a device is carried out using this instruction. The individual steps of

the instruction are:

a) Enableserial poll (SPE)

b) Address with talker address b (TADb;, SADDb>)
¢) Readindevicestatusinv% (IEC% IN v%)

d) Deaddress talker (MTA)

e) Disableserial poll (SPD)

[n] IEC[z]SPL by [; b2], v%

n: line number, also including label

z: number of IEC bus 1 or 2, default 1

bi: Talker address (0 to 31) (decimal value of IEC address)

b,: Secondary address (0 to 31)

v%: fixed decimal point variable into which the device status is read.

If an error, e.g. timeout, occurs within the SPL sequences since the addressed device
is not present, the bus will remain in an undefined status. IECSPD must be run in
any case. This instruction may be incorporated into an error handling routine.

293 E-7

http:376.1452.00

IEC instruction

SetTime T1 on the Bus

Purpose: For the testing of IEC-bus systems and for obtaining the maximum data rate, the
time T1 as laid down in the IEC-625 standard can be set in the computer.

Syntax: [n] IEC[z]T1 b
n: line number, also including label

z: number of IEC bus 1 or 2, defauit 1
b: parameter between 0 and 7 (1.75 ps). Default 500 ns.

Remarks: T1 defines the time between applying data on the bus and setting DAV true, while
a byte is transferred from the controller to the IEC bus. T1 is set in steps of 250 ns.

Note: T1 = Oor 1is outside the specification of the IEC standard.

b T1

0 (]

1 250 ns
2 500 ns
3 . 750 ns
4 1ps
S 1,25 ps
6 1.5ps
7 1,75 ps

376.1452.00 2.94 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

376.1452.00

IEC instruction

Addressing of Devices
Addressing a talker

[n] IEC[z]TAD b

n: line number, also including label
z: number of IECbus 1 or 2, default 1
b: address (0 to 31) (decimal value of bits b1 to bg or IEC address)

A device addressed as a talker transmits its data on the IEC bus when the ATN line
has been reset. Only one talker can be addressed at one time. Addressing of a
second talker automatically deaddresses the first (in line with the standard).

The address b is always specified as the decimal value of the address bits by to bg of
the data bus. In line with the standard, a device may be assigned the same talker
and listener address. Bits by to bs are identical in this case.

This statement outputs the talker addresses 64 to 95 (decimal) together with ATN.

295 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

376.1452.00

IEC instruction

Take Control

. Activities on the IEC bus are usually controlled with a single controller. Sometimes

two or more controllers participate in the control. The IEC bus standard includes
the requirements for this case.

Two interface functions are required for the control:

a) System control
This function can transmit the messages "Interface clear" (IFC) and "Remote
enable" (REN) at any time and must be performed by the same controller
throughout the entire period of bus operation.

b) Control function
This function enables the controller to transmit addresses, instructions and
data and to carry out device polls. The control function may also only be
performed by one controller at a time but may also be transferred to another
controller. BASIC has the following instructions for this purpose:

[n] IEC[z]TCT (take control)

n: line number, also including label

z: number of IEC bus 1 or 2, default 1

Transfer is carried out using the following instruction sequence:

IEC TAD Addressing of controller which is to take control
IEC TCT Transfer of control

This statement outputs the control character 9 (decimal) together with ATN.

2.96 E-7

http:376.1452.00

-

Syntax:

Remarks:

Note:

376.1452.00

IEC instruction

Definition of the Input Terminator

[n] IEC[2]TERM b

line number, also including label
number of IEC bus 1 or 2, default 1

TOOND3

= 0: CR and LF or EOI
=1: only EOI
= 2...255: decimal value of the terminator in ASCII code (table 6-7) (or EOI)

For data inputs, a terminator must be transmitted which the computer recognizes
as the end of the input. The instruction is as follows if the input is to be terminated
with e.g. "LF": IEC TERM 10. The input is terminated by |EC TERM 0 after the
character combination “CR" and "LF" has been transmitted.

Independent of the terminator specified by the instruction IEC TERM, data input
will always be terminated if the line message "END" (on EOI) is transmitted. The
instruction will be IEC TERM 1 if only the message "END" (and not one of the ASCII
characters transmitted on the lines DIO1 to 8) is to terminate the input.

If the terminator does not change, it will be sufficient to include the instruction
only once in the program before the first data input.

IN instructions such as IEC INa and IEC $IN do not load the terminator into the string
variable.

297 E-7

http:376.1452.00

IEC TIME _

Syntax:

Remarks:

- Possible

error message:

376.1452.00

IEC instruction

- Time-out Monitor

[n] IEC[z]TIME b

n: line number, also including label
number of IEC bus 1 or 2, default 1
b: timeinms(1to32767)

0 = switch off time-out monitor

e

The controller provides the facility for monitoring the time during a handshake
procedure. The time required to transfer a character is monitored.

In line with the IEC standard this will be the time from 5 to 7 if the controller
operates as a talker (output handshake) or from 4 to 5 if the controller is a listener
(input handshake) :

The controller waits for a period of b [ms] with a handshake. The instruction should

be written at the start of a program if devices are connected which require more
than 1 s for character transfer. Without this instruction, a value of 1 s will apply.

The controller will terminate the handshake if the specified waiting time is
exceeded. The following error message will appear.

ERROR 10: '"TEC bus time out"

The program is terminated following output of the error message.

2.98 E-7

http:376.1452.00

W

IECUNL -

Purpose:

Syntax:

Remarks:

376.1452.00

IEC instruction

Unaddressing of Devices as Listener

The device or the group of devices previously addressed as listener is reset into the
passive status (unaddressed) using this instruction.

[n] LEC[z]UNL

n: line number, also including label

2z: numberof IECbus 1 or 2, default 1

The controller sends the character 63 (3FH), i.e. the listener address 31 (1FH)
together with ATN.

In the case of the higher IEC instructions such as IEC IN and IEC QUT, this message is

automatically sent by the controller in order to set the devices connected to the IEC
bus into a defined status. :

2.99 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Example:

Note:

376.1452.00

IEC instruction

Wait for Addressing

The controller must be addressed prior to data transfer before it can operate as a
talker/listener on the IEC bus. in order to synchronize data transfer, the instrument
can wait until its address specified in the IEC ADR instruction is received. This is
effected using the instructions

IEC WMLA (wait my listener address) or
IEC WMTA (wait my talker address)

[n]IEC[a]WMLA [n]IEC[z]WMTA

n: line number, also including label
z: number of the IEC bus 1 or 2, default 1

The running program waits on receiving the instruction IEC WMLA or |IEC WMTA
until the address of the instrument appears together with ATN. All other data and
commands on the bus are ignored. The instruction does not have a time-out
function to synchronize infrequent data transfers.

Operation as a listener on the bus

100 IEC RLC

110 IEC TERM13:IEC ADR10
120 IEC WMLA

130 IEC $INAS

Operation as talker on the bus

100 IEC RLC

110 IEC ADR12

130 IEC WMTA

140 A$="DATEN"+CHR$(13)
150 IEC SOUT AS$

o

Operation of the PCA as a talker/listener on the bus is described in Section 1.5.

2.100 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Example:

376.1452.00

IECWTCT

IEC instruction

Wait for Transfer of Control

If the computer is operated as a talker/listener on the bus but is to control the bus
transfer, it can wait for transfer of the contro! by means of the IECWTCT instruction
(wait take control).

[n] IEC[z]WTCT
n: line number, also with label

z: numberof IEC bus 1 or 2, default 1

The program waits on receiving this instruction until the computer is addressed
with its talker address specified in the IECADR instruction and receives the message
TCT. The computer controls the bus once the instruction has been executed and can
address connected devices and handle data transfer. The IECWTCT instruction does
not have a time-out function.

Wait for transfer of control

100 IEC RLC

1000 IEC WTCT
1010 IEC OUT 16."DATA"

2.101 E-7

Purpose:

Syntax 1:

Remarks:

Syntax 2:

Remarks:

Example:

376.1452.00

Instruction (structure element)

Changing the Program Run

Changes the program run according to the result of a numeric expression.

[n]
[n]
[n]
[n]
[n]

n:
a:

IF a GOTO n
IF @ THEN n
IF a GOTO Label
IF a GOSUB n
IF a GOSUB Label

line number, also including labels
expression

If the expression is true (i.e. not 0), e.g. because the comparison is fulfilled, the
program will be branched. If the expression is false (i.e. 0), the program will be
continued with the instruction following IF.

[n] IF a THEN instruction [:instruction]...
[n] IF a THEN instruction ELSE instruction

[:instruction]...

THEN may be followed by a further instruction or a series of instructions separated
by “:“. In particular, nesting of further IF instructions is possible.

If the expression is true, the instruction following THEN will be executed until the
end of the line or the keyword ELSE. If the expression is false, the keyword ELSE will
be searched for and the instruction(s) following it executed. If no ELSE is found, the
program will be immediately continued with the next line.

100 IF A$="JA" THEN PRINT "OK":GOSUB 300
200 IF F AND A=3 THEN RETURN
300 IF A THEN GOSUB Abc ELSE GOSUB Bcd

2.102 E-7

http:376.1452.00

Instruction (structure element)

Syntax 3: [n] IF a THEN
[n] instruction

[n] instruction
[n] ENDIF

oder

[n] IF a THEN

[n] instruction
[n] ;nstructﬁon
[n] ELSE
[n] instruction
[n] ;nstruction
[n] ENDIF
Remarks: If nothing follows the keyword THEN in the line (except an instruction separated by

*:"), this IF instruction will be interpreted as structure element.The following lines
will be executed as a block if the expression is true until the instruction ELSE or
ENDIF is found. The ELSE instruction may be used but, in any case, the ENDIF
instruction must mark the end of block for otherwise an error message will be
output. If the expression is false, the ELSE instruction will be searched for and, if
available, the lines between ELSE and ENDIF executed. Further structures may be
nested in an IF-THEN-ENDIF structure. In these cases, better readability should be
ensured by indenting lines.

Example: 100 IF A<1 THEN
110 Print "OK"
120 GOSUB Subrl
130 ELSE
140 Print "ERROR"
150 GOSUB Subr2
160 ENDIF

Possible
error message: ERROR 48:"no IF-struc.,[ELSE], ENDIF match”

Reason: THEN/line indentation has been found without ENDIF, or ELSE or ENDIF has been
found without active IF-THEN/end of line instruction.

Related
instructions: ELSE, ENDIF

376.1452.00 ' 2.103 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related

instructions:

Example:

376.1452.00

Instruction

Keyboard Read-in

The INKEY instruction allows data to be read into the controlier from the keyboard.
In contrast to the INPUT statement, it does not stop the program and can only read
in one character at a time.

[n] INKEY v$

n: line number, also including label

v$: stringvariable

With each INKEY statement, the controller stores the last character from the
keyboard buffer in the variable and removes the character from the keyboard
buffer. .

INPUT#, INPUTS()

100 INKEY C$
Wait until any key is pressed (use of an empty character string)

200 INKEY A$: IF A$="" THEN 200

2.104 E-7

http:376.1452.00

-Purpose:

Syntax:

Remarks:

Related
function:

Example:

Note:

376.1452.00

Numeric function

Reading and Writing via I/0O Addresses
To read and write via the {/O addresses

INP(a) Function
a: input address (0 to 65535)

The 1/0 addresses O to 65535 can thus be accessed to. 8-bit words can be read in or
out for these addresses using INP or OUT.

ouT

Read in /O address 4

100 PRINT INP(4)

With the PCA2/S, this function addresses interfaces connected to the I/O bus. With
the PCA12/15, however, the I/0 addresses of the multibus are addressed via the 286
CPU. This is another reason why the BASIC instructions or MS-DOS system calls
should be used for all inputs and outputs instead of accessing the interfaces
directly.

2.105 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Possible
error message:

Reason:

376.1452.00

Instruction

Keyboard Input

The INPUT statement is suitable for entering data or string constants from the
keyboard into the controlier during a program.

[n] INPUT["t";]vi[,vn]...

n: line number, also including label

t: string constant output on the screen by the input
v: numericor string variable

The string constant (if entered) is output on the screen in the case of the INPUT
statement. The controller then waits with a flashing cursor for data input. This is
terminated by the return key. In addition, a question mark is displayed without "t".
The value of the variables will be set to 0 if return is entered without a character.

If several variables v; are present after INPUT, these can be read in all together if
they are each separated by a comma, or individually with return.

INPUT#, INPUTS()

100 INPUT F
200 INPUT A,B,CS

Display: 7]
Program branching:

1000 INPUT "AGAIN";AS$
1010 IF A$="YES" THEN 100

Display: AGAIN []

ERROR 37: "variable type mismatch”

An attempt has been made to load a text into numeric variables.

2.106 E-7

http:376.1452.00

Note: °

Example:

376.1452.00

Instructions

When the INPUT instruction is reached, entries made via the keyboard are output
on the monitor. Entries to the INPUT line are not made via the keyboard, but by
using the return key the contents of the screen memory are read to the line where
the cursor is positioned.

It is thus possible to make entries of the complete screen by the vertical shift of the
cursor and thus for example a menu control can be set up with the PRINT
instructions.

If the INPUT instruction is written without a text, the content of a line is read from

the second place with reference to the left-hand screen edge. With a text having n
placesin the INPUT line, the content of a line is read from the n + 1th place.

100 PRINT "1234567"
110 INPUT AS$

If the flashing cursor is positioned on the PRINT line and the return key is pressed to
terminate the INPUT line, the value of A$ will be:

234567

100 PRINT "1234567"
110 INPUT "TEXT":A$

Value of A$: 567

2.107 E-7

http:376.1452.00

 INPUT#

INPUT# .

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Possible
error message:

Reason:

Note:

376.1452.00

Instruction

Read-in from a File/Interface

Data can be read from a file selected using the OPENI# instruction or an interface
and assigned to a numeric or string variable.

[n] INPUT#a, V4[,V2]...

n: line number, also including label

a: channel number (1 to 15)
vj: string variable to be read into

Up to 80 characters can be read into the numeric variable or the string variable v,
to vi.

Leading spaces and carriage return are ignored in the case of numeric variables. A
space, carriage return or a comma is interpreted as the end of a number. Only the

carriage return character is recognized as a delimiter in the case of character
strings.

INPUTS(), INPUT, OPENI#, CLOSE#

10 INPUT#5,C$S
Read data from floppy disk

100 OPENI#1,"DATEI ASC"
110 INPUT#1,A

ERROR 39: "out of data"
An attempt has been made to read into more data than are present in the file.
The following error message will appear if an instruction is used when the drive has

no floppy.

"DOS: drive not ready”

2.108 E-7

http:376.1452.00

p—

-

INPUTS

Purpose:

Syntax:

Remarks:

Related
instructions::

Example:

376.1452.00

String function

Read-in from File or Interface

Read-in of a string of n characters which has been read from the keyboard or from
an interface/file with the channel number.

INPUTS (vn,[#a])

vn: number of characters to be read (1 to 65535)
a: Channel number; read-in from keyboard if not further specified.

If the keyboard is used for the input, no characters will be displayed on the screen.
The program is continued only when all the n characters have been entered.

n characters are read in from a file or interface unless the file is shorter. End of file
is recognized by the fact that the number of returned characters LEN(v$) is not
equal to the number of characters requested.

Single characters are read in with special casen = 1.

All characters are accepted. In particular, in contrast to the INPUT# instruction, all
control characters, such as carriage return, are accepted.

OPENI#, CLOSE#. INPUT#, INPUT

10 OPENI# 3,"DATA"

20 REPEAT

30 A$=INPUTS(1,#3)

50 PRINT RIGHTS(HEXS(ASC(AS$)).2):" ":
70 UNTIL LEN(AS$)=0

80 CLOSE# 3

Reads single characters from a file and converts them to a 2-digit HEX number for
output on the screen.

2.109 E-7

http:376.1452.00

Numeric function

Integer Function

Purpose: Reads in the greatest integer which is equal to or less than a.

Syntax: INT(a)
a: constant, variable or numeric expression

Remarks: If a is positive, the digits after the decimal point are set to 0, if a will be negative,
the number will be rounded to the next integer.

Example: 100 C=INT(A*B)
200 A=INT(A+.5)

PRINT INT(1.6) —1
PRINT INT(-1.4) —-2

376.1452.00 2.110 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Note:

Related

instructions:

376.1452.00

Graphics instruction

Invert Graphics

The INVERT instruction inverts the graphic display for the whole of the screen. All
blanked dots become unblanked and the unblanked dots become blank. The
instruction may be repeated as often as required. The output on the screen is
inverted each time.

[n] INVERT

n: line number, also including label

The INVERT instruction does not change the contents of the graphics memory but

only switches over the screen output This type of output is for exampie not
conveyed to the printer.

This instruction is only relevant for b/w monitors. With the color graphics option

PCA-B3, the display on the screen is determined by the color instruction.

SET, COLOR

2111 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Note:

Example:

376.1452.00

Graphics Instruction

Labelling of Graphics

Using this instruction, the specified character string is used for labelling purposes in
graphics mode.

The current position of the imaginary pen determines the top left edge of the
labelling.

[n] LABEL s$ [,a[.b[.c]]]

n: line number, also including label
s$: string for labelling

a: 0to 15 size of character

b: 0to7 writing direction

c¢=0: -bright ondark background
c¢=1: dark on bright background

Non-specified parameters a, b, c are interpreted as 0.
The LABEL instruction operates analogous to the graphics instructions. So as not to

destroy existing graphics all dots can be inverted with a previous SET-1.

Parameter b: -
Writing direction

100 LABEL "<--3.25m-->"
200 LABEL "PCA",15,1,1

2.112 E-7

Purpose:

Syntax:

Remarks:

Related
functions:

Example:

376.1452.00

String function

Separate First Character from a String

A certain number of characters can be removed from the left side of a character
string for further processing using the LEFT$ function.

LEFTS(sS,a)

s$. character string variable or constant

a: number of characters

The parameter a specifies the number of characters to be used for further
processing. The complete character string will be used if the number of characters
amounts to less than a. The output character string s$ remains unaffected by this
operation. :

RIGHTS, MIDS

100 A$="PROCESSCONTROLLER™:PRINT LEFTS(AS,7) "

Display: PROCESS

2.113 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Example:

376.1452.00

Numeric function

Length of a String

The LEN function supplies the number of characters in a string variable (e.g. A$) or
the length of a string constant so as to continue calculation with this number.

LEN (s$)

s$: String variable or string constant in quotation marks

All character, even spaces, are counted when calculating the lenght. The resuit can
be used as a numeric variable and assigned or output accordingly.

?LEN ("CONTROLLER")
Output on screen: 10

100 G=LEN (AS)

2.114 E-7

Instruction

Assignment of Variables

Purpose: For reasons of compatibility, the LET instruction forms part of the standardized
ANSI BASICinthe PCA BASIC. It may be left out when assigning variables.

Example: Instead of

100 LET A=10

100 A=10

may be used.

376.1452.00 2.115 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Note:

Related
command:

376.1452.00

Command

Display of an Entered Program on the Screen

The LIST command is suitable to output a BASIC program entered via the keyboard
or loaded from the floppy disk on the screen.

LIST [n] [-[m]]

LIST n-moutput from line n to line m

LIST n- output from line n up to end of program

LIST -m output from start of program up to line m

LIST n outputlinen

With this command it is possible to enter line numbers from which, or up to which,
the program is to be output.

Listing is terminated by pressing the Break key.

Listing is possible on the printer using PLIST. Listing may be stopped using the Ctrl
(Strg) keys together with S.

PLIST

2.116 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Related

instructions:

Possible
error message:

Possible
Reason:

376.1452.00

Instruction

Loading Programs

This instruction loads the program from the floppy disk or the fixed disk into the
main memory. It is important to exactly specify the program name, including all
characters, spaces and extensions for otherwise the program cannot be found. If
the program name is written without an extension, BASIC will search for a file with
the extension ".BAS."”. If strictly a file without extension is to be loaded, the
program name must end with ”.". The LOAD instructions may be executed directly
or under program control.

[n] LOAD s$ [.R]
n: line number, also inctuding label

R: automatically starts the loaded program (RUN)
s$: program name, also with drive and search path

Contrary to ALOAD, the existing program is deleted with LOAD. All variables are
also deleted. Programs can therefore be joined together in particular under
program control.

SAVE, ALOAD
ERROR 52: "DOS open error”

Program name does not exist.

2.117 E-7

http:376.1452.00

Purpose:

Syntax:

Related
instruction:

376.1452.00

Instruction

Loading (Machine) Routines
LOAD# can be used to load (machine) routines which are to be called using CALL#. ©
[n] LOAD# a, s$
n: line number, also including label

a: numeric expression, value 1to 7, link number
s$: filename, also with drive and search path

CALL#

2.118 E-7

http:376.1452.00

Purpose:

Syntax:

Related
function:

Example:

Possible

error message.

Reason:

376.1452.00

Numeric function

Logarithmic Function

This function calculates the natural logarithm (to base e = 2.7182818).

Math.: y =inx

LOG(a)

a: constant, variable or numeric expression

EXP

100 Y=LOG(X)
Logarithm to base 10 can be evaluated:

Math.:
Inx
inl10

y:lgx:

100 Y=LOG(X)/LOG(16) =~

ERROR 31 in LINE 100: "numeric overflow"

Argumenta < 0

2.119

E-7

http:376.1452.00

Purpose:

Syntax:

Related
function:

Example:

376.1452.00

String function

Read Character from the Middle of a String

Reads from a string a number of b characters from position a. It can be used e.g. to

suppress the header in IEC IN instructions.

MIDS(s$.a,b)

s$: string variable or string constant
a: position where reading is started

b: number of characters

LEFTS, RIGHTS

100 A$="PROCESSCONTROLLER" :PRINT MID$(AS,8.7)

Display: CONTROL

2.120

E-7

Purpose:

Syntax:

Related
functions:

376.1452.00

Graphics instruction

Moving the Graphic Cursor

This instruction moves the graphic cursor to the point of intersection of the x and y
coordinates without producing a visible trace. It determines the point where
drawing is started.

[n] MOVE x,y

n: line number, also including label
x,y: numeric expressions for the X/Y coordinates

RMOVE, DRAW, RDRAW, DOT

2121 E-7

http:376.1452.00

This page has been kept free on purpose. The BASIC instruction of an option may be inserted here.
The pages to be inserted are to be found in the manual of the option concerned.

376.1452.00 2.122 E-7

http:376.1452.00

Command

Command to Delete the Program

Purpose: The complete program and all variables are deleted by the NEW instruction. A new
program can then be entered.

NEW resets BASIC to the state after loading.

Related
instructions: LOAD, CLR, ERASE, DELETE

376.1452.00 2.123 E-7

Instruction

Loop Instruction (End)

See FOR instruction

376.1452.00

http:376.1452.00

- ON ERROR

Purpose:

Syntax:

Remarks:

Related
functions:

376.1452.00

Instruction

Branch on Error

With this conditional jump instruction a jump is made to an error routine to
prevent a program abort in the event of a fault.

[n] ON ERROR GOTO m or label
[n] ON ERROR GOSUB m or label
[n] ON ERROR RETURN

n: line number, also including label

m: line number to be jumped to or line number of subroutine

label: any character sequence consisting of letters, digits and underline
characters

If GOTO/GOSUB is not followed by a line number but by a character sequence
starting with a letter, BASIC will search for the line of this label. It is to be noted
that this label is located directly after a line number and must end with a colon.

This instruction may be present at any position in the program but must be read in
at least once before an error occurs. If this instruction is used several times, the
program will jump to the position specified by the last ON ERROR GOTO m
instruction.

After branching on occurrence of an error, the ON ERROR instruction is inactive
until set once again with a new ON ERROR GOTO instruction. The setting can also
take place in the subroutine and should be the last executable instruction prior to
RETURN (nesting depth).

This branch into an error routine can be set inactive again using ON ERROR
RETURN. Following this instruction, error messages are again displayed on the
screen.

In the error-handling routine, the error line can be polled with the function ERL(0)
and the error number with ERM(0).

ERL, ERM

2.125 E-7

http:376.1452.00

 ONGOSUB

Instruction

Branch into Subroutines

Purpose: A branch. into subroutines can be madeé with ON...GOSUB depending on an
expression.
Syntax: [n] ON a GOSUB m[.mj]...

[n] ON a GOSUB label, [,labelj]...

n: line number
m;: branch line numbers
a: numeric expression
label: any character sequence consisting of letters, digits and underline
characters :
Remarks: RETURN is used at the end of the subroutines just as with the GOSUB statement.

See also ON GOTO.

If GOSUB is not followed by a line number but by a character sequence starting
with a letter, BASIC will search for the line of this label. It is to be noted that this
mark is located directly following a line number and must end with a colon.

Related

instructions; RETURN, ON GOTO <

Example: 100 ON R GOSUB1000,2000
110 END
1000 REM Subroutine R=1
1100 RETURN
2000 REM Sybroutine R=2
2100 RETURN

Possible

errormessage: ERROR 25: "undefined line or label"

Reason: Branch line number does not exist

376.1452.00 2.126 E-7

http:376.1452.00

Purpose:

Syntax:

Remarks:

-
Related

instruction:

Example:

Possible

error message:

Reason:

376.1452.00

Instruction

Multiple Branching

Branches to one of several branch targets, depending on the value of an
expression.

[n] ON a GOTO my [. my]...
[n] ON a GOTO labely, [Tabel;]...

n: line number, also inciuding label

a: variable, constant or numeric expression

m...mi: line numbers of branch targets

label: any character sequence also with letters, digits and underline characters

The program jumps to the specified program lines depending on the magnitude of
a, namely:

No jump

a<1

a=1 Jumptom;orlabel,
a=2 Jumptom;orlabel;
a=i Jump to m; or mark;
a>i No jump

A numeric expression may be used for a. Any digits after the decimal point of a are
ignored. If GOTO is not followed by a line number but by a character sequence
starting with a letter, BASIC will search for the line of this label. This label must be
located directly following a line number and end with a colon.

ON GOSUB

100 ON X GOT0200,300,400

200 REM BRANCH TARGET WITH X=1
300 REM BRANCH TARGET WITH X=2
400 REM BRANCH TARGET WITH X=3

For the calculated jump:
100 ON (A®B)-(C®D) GOTO 200,300,400

For extension if line length is insufficient for all branch line numbers:
100 ON R GOTO 200,210,220,230,240.250,260,270,280,290

110 ON R-10 GOTO 300,310,320,330,340,350,360,370,380,330

120 ON R-20 GOTO 400,410,420,430,440,450,460,470,480,430

ERROR 25: "undefined line”

Branch target does not exist.

2.127 ' E.7

http:376.1452.00

Purpose:

Syntax:

Remarks:

Example:

Note:

Possible
error message:

Reason:

376.1452.00

Instructions

Event-controlled Branch on Pressing a Key
Branches to a subroutine by pressing any key or softkey.

[n] ON KEY GOSUB m or label
[n] ON KEY GOTO m or label
[n] ON KEY RETURN

n: line number, also including label

m: line number

If GOSUB/GOTO is not followed by a line number but by a character sequence
starting with a letter, BASIC will search for the line of this label. This label must be
located directly following a line number and end with a colon.

An interrupt is generated in the computer by pressing a key. Since, however,
current statements must not be interrupted, the interrupt is only detected with the
next line number.

The key code can be read in and processed further in the subroutine using INKEY.
The branch target can be redefined in the program run using ONKEY GOSUB. The
target last specified is always the valid address. A return from the subroutine is
made using the RETURN instruction.

ON KEY RETURN switches off this mode. Préssing of a key no longer causes
branching. ,

Abort program with key E

100 ON KEY GOSUB 1000

1000 INKEY A$: IF A$="E" THEN END
1010 ON KEY GOSUB 1000: RETURN

Renewed calling is blocked following a branch into the subroutine until a new
target is defined using ON KEY. In order to avoid nesting, this instruction should be
directly followed by RETURN (i.e. only separated by ':').

ERROR 25: "undefined line or label”

Branch line number does not exist.

2.128 E-7

http:376.1452.00

Syntax:

Remarks:

Syntax:

Note:

IEC instruction

Event-controlled Branching on Service Request

[n] ON SRQ [a] GOSUB m or label
[n] ON SRQ [a] GOTO m or label

n: line number, also including label
m: line number
a: number of the IEC bus

If GOSUB/GOTO is not followed by a line number but by a character sequence
starting with a letter, BASIC will search for the line of this label. This label must be
located directly following a line number and end with a colon.

The program branches to a subroutine with ON SRQ GOSUB n when a service request
of the device is received via the |EC bus interface. The subroutine commences with

the line number “n"; the calling device is usually identified by a serial poll and is
then serviced. '

This instruction may be present at any position in the program but must have been
read at least once before being executed for the first time. The last instruction read
is executed if the instruction appears several times.

The return from the subroutine to the interrupted main program is made as usual
using the RETURN statement. Branching to a subroutine following a service request
may be inhibited by the following instruction:

[n] ON SRQ RETURN

n: line number

A second SRQ remains inhibited after branching (ON SRQ RETURN it will be executed
automatically). An ON SRQ GOSUB n line must then be in the program again before
BASIC responds to SRQ again. To prevent inadmissibie branching as a result of
repeated interrupts, the RETURN instruction must be placed immediately after the
ON SRQ GOSUB instruction (the two being separated by ';).

1000
1010 IECSPL13,V% 1
Service
routine
J

1100 ON SRQ GOSUB 1000: RETURN

The SRQ service routine must contain at least one SPE command (or one SPL
command which executes the SPE command implicitly).

Purpose:

Syntax:

Note:

Example:

Example:

Note:

Instruction

Event-controlled Branching

If a particular program is to be executed depending on the time, the time and the
branch line number can be output in any line using this instruction.

[n] ON TIME a GOSUB m or label
[n] ON TIME a GOTO m or label
[n] ON TIME RETURN

n: linenumber, also including label

m: line number

a: numeric expression indicating the time in hundredths seconds since midnight
(max. 100 x 60 x 60 x 24 = 8,640,000, -1).

If GOSUB/GOTO is not followed by a line number but by a character sequence
starting with a letter BASIC will search for the line of this label. This label must be
located directly following a line number and must end with a colon.

The branch line number can be redefined during the program run using ON TIME
GOSUB. The line number last specified is always the valid address. A return from the
subroutine is made using RETURN.

ON TIMING RETURN inhibts branching to the subroutine.

Renewed calling is inhibited following branching to the subroutine until a new
branch target is defined using ON TIME.

Cyclical interrupt (every 100 hundredth seconds, i.e. once a second)

10 ON TIME (TIME+100) GOSUB 50

20 GOTO 20: REM ENDLESS LOOP

50 PRINT "SECONDS INTERRUPT"

60 ON TIME (TIME+100) GOSUB 50: RETURN

Output of time

10 ON TIME((12°60+15)*60+0)*100 GOSUB 200
20 GOTO 20: REM ENDLESS LOOP ' e
200 PRINT "12:15:0 O'CLOCK!"

This instruction is only carried out by the PCA, if the real time clock (PCA-B10
option) is fitted.

Purpose:

Syntax:

Related
instructions:

Example:

Possible

error message:

Reason:

Possible

error message:

Reason:

Note:

Instruction

Open aFile for Input
or Input via Interface

Enable the file to read in data (INPUT). Inputs from interfaces, floppy disk and fixed
disk take place via the file management of the operating system. Opening a file
with this instruction determines that the file is to be read.

n OPENI# a,s$

n: line number, also including label

a: channel number
s$: file name, also with drive and search path or interface name

CLOSE#, OPENO#, INPUT#, INPUTS()

Open channel 1in order to read data with the name "DAT1" from the floppy disk:

100 OPENI #1,"DAT1"

ERROR 54: "no valid file number"”, device driver not loaded”

An attempt has been made to open more files than possible, or parameter a lies
beyond the permissible range.

Even if the number of files is set > 15 in the file CONFIG.SYS, MS-DOS permits only

15 files to be open at the same time. Since BASIC internally requires between 3 and
approx. 7 files, the user has only about 8 to 12 open files left.

ERROR 49: "file already open”

An attempt has been made to open an already opened file. The file is closed again
with an error message.

The file must be reopened accordingly when changing between read and write
functions. A file is opened for output with OPENO#.

Purpose:

Syntax:

Related
instructions:

Example:

Possible

error message:

Reason:

Possible

error message:

Reason:

Note:

Instruction

Open a File for Output
or Output via Interface

Similar to the OPENI# instruction, the OPENO# instruction is used to open a file for
output or an output interface via the file management of the operating system.
Opening of a file with this instruction determines that the file is to be written to.

[n] OPENO¥# a,s$
n: line number, also including label

a: channel number(1to 15)
s$: filename, also with drive and search path or interface name

CLOSE#, OPENI#, PRINT#

Open channel 1 in order to write data with the name "DAT1":

100 OPENO# 1,"DAT1"

ERROR 49:"no valid file number”

An attempt has been made to open more files than possible (see also OPENI#

instruction).

ERROR 49:"file already open”

An attempt has been made to open an already opened file. The file is closed again
with this error message.

The file must be reopened accordingly when changing between read and write
functions.

Syntax:

Instruction

Console

CON is the name of the file for console operations.

The console can be serviced by BASIC also with INPUT# and PRINT# instructions.
[n] OPENI# a,"CON:"

[n] OPENO# a,"CON:"

n: line number, also including label
a: channel number (1 to 15)

OPEN IEC

Purpose:

Syntax:

Instruction

Standard Input/Output via IECBus

The standard input/output with the INPUT# and PRINT# instructions or the
INPUTS$() function is also possible via the [EC-bus interface, in addition and parallel
to the IEC instructions. With this programming, all inputs/outputs can be diverted
to a different interface, e.g. screen and keyboard for testing purposes. This is done
by modifying the OPEN instructions. The disadvantage lies in the fact that the
notation is in most cases longer than that of the specific IEC instructions.

[n] OPENO#a,"lEC:parameter list"
[n] OPENI#a,"lEC:parameter list”

n: line number, alsoincluding label
a: filenumber (1 to 15)

The parameter list may contain the following words and parameters (the notation
corresponds to that of the IEC instructions; the functions are described in detail
there):

Command Parameter Remark

UNI lor2 Determining the interface (IEC1 or IEC2) to which the following
commands or inputs/outputs are to be addressed.

Universal commands

Command Parameter Remark
LLO -— LOCAL LOCKOUT, lock manual operation
DCL - DEVICE CLEAR, reset device

Addressing commands

Command Parameter Remark
LAD 0to 31 LISTENER ADDRESS, address device as listener
TAD 0to 31 TALKER ADDRESS, address device as talker

SAD 0to 31 SECONDARY ADDRESS, secondary address

Addressed commands

Command Parameter Remark
GTL — GO TO LOCAL, switch selected device to manual operation
SDC — SELECTED DEVICE CLEAR, reset selected device
GET — GROUP EXECUTE TRIGGER, trigger selected devices
Deaddressing commands
Command Parameter Remark
MTA — MY TALK ADDRESS (UNT), deaddress the talker
UNL — UNLISTEN,deaddress the listener
END - sends this character with EQI line active
e.g.END 10 sends LF with EOI

Line commands

Command Parameter Remark
REN — REMOTE ENABLE, enableline
NREN — REN, disable REN line
IFC —_ INTERFACE CLEAR, enable line for 500 ps

Multi-controller operating commands

Command Parameter Remark
TCT —_ TAKE CONTROL, transfer control to other controller
RLC — initialize controller as talker/listener
WMLA - wait for addressing as listener
WMTA - wait for addressing as talker

wait fof transfer of control

. OPEN IEC

Setting parameters

Command Parameter Remark
TERM 0to 255 Input terminator 0: CRand LF or EQI
b only EOI (default)
210 255: thischaracter or EQI
ADR 0to 31 set own address, default 31
T1 0to 31 delay time for line DAV incrementing by 125 ns. Default 3

corresponding to 500 ns.

TIME 0to 65535 time monitoring in ms
0 corresponds to time monitoring off
default 1000 correspondsto 1s.

Exampie: 300 OPENO# 3, "IEC:LAD1"
310 PRINT# 3, "W3,X3" :REM for UDS5
320 CLOSE# 3
330 OPENI# 4, "IEC:TAD1,TERM10"
340 AS=INPUTS(20,#4)
350 CLOSE# 4
360 PRINT AS

is equivalent to

310 IEC OUT 1,"W3,X3" :REM for UDSS5
330 IEC TERM 10

340 IEC IN 1,AS

360 PRINT AS$

- OPEN LPT

Instruction

Controlling the Centronics interface

Purpose: The Centronics interface is serviced via the file management of the operating
system.

“LPT" is the name of the file via which the Centronics interface is opened. "PRN”
corresponds to the first Centronics interface LPT1.

Syntax: [n] OPENO# a,"LPTz:"
[n] OPENO# a,"PRN:"

n: line number, alsoincluding label
a: channel number (1 to 15)
2: number of interface 1 or2

Example: 100 OPENO# 1,"LPT1;"
110 PRINT# 1,"PRINTER TEST"
After the version 1.90 the device driver LPTx can also read the status with LPTb:

100 OPENI#1, "LPT1:"
110 Status = INPUTS(1,#1)

or for the second interface:

100 OPENI#1, "LPT2:"

110 Status = INPUTS(1.#1)

Status = 0: everythingo.k.
2: printer: not ready

Related -
command: FORM
Note: If a lower and upper myrgin is set using the FORM command before the execution

of this instruction, a formfeed will be released with the OPEN instruction.

Purpose:

Syntax:

Remarks:

Note:

Related
instructions:

Instruction

Writing via I/0 Addresses
To write via the I/O addresses of the computer.

[n] OUT a,b instruction

n: line number, also including label
a: output address (0 to 65535)
b: valueto be written (0 to 255)

The I/O addresses between the values 0 and 65535 can be accessed. Using OUT, 8-bit
words can be output at each of these addresses.

With the PCA12/15, the I/O addresses of the multibus are addressed via the 286 CPU
(see PCA manual). This is another reason why the BASIC instructions or MS-DOS
system calls should be used for all inputs/outputs instead of accessing the interfaces
directly. In contrast thereto, this instruction is used with the other Rohde&Schwarz
controllers to address interfaces connected to the I/O bus.

INP

Instruction

Call of Pascal Routines

Purpose: Call of procedures written in Pascal (see PCA-K11 manual).
Syntax: [n] PASCAL a[,v]...

n: line number, also inciuding label

a: procedure number of Pascal program

v: integer, floating decimal point or string variable
Example: 100 Sweep=3

110 PASCAL Sweep, Startfreq, Stopfreq

Purpose:

Syntax:

Remarks:

Related

instructions:

Example:

Numeric function

Reading of Memory Locations
Transfers a byte from a memory location.

PEEK(a)

a: address of the memory location (-32768 to 65535)

The parameter a merely sets the address offset. If the segment of the address is
outside the BASIC segment when reading memory locations, the SEGMENT
instruction must be given first. Integers are stored internally in 2 bytes (MSB =

sign). Thus, negative addresses do not represent a negative offset but an offset
greater than 32767.

POKE, SEGMENT, VARPTR

100 PRINT PEEK(22)

Purpose:

Syntax:

Example:

Pseudo variable

Circle constant

Represents the numerical value of the circle constant m.

PI

10 A=COS(Grad * PI/180)
20 PRINT PI
— 3.14159265395

Purpose:

Syntax:

Remarks:

Example:

Instruction

Generation of Signal Tones

Signal tones and tone sequences with variable pitch and duration can be generated
using the PCA.

[n] PLAY sS$[.a]
n: line number, also including label

s$: string variable which characterizes the pitch and duration
a: repetition rate (0 to 8; default value 4)

Several tones can be included within the string variable. Each tone comprises a
letter which characterizes the pitch and a subsequent number for the duration. The
symbols # and & prefixed to the tone letter increase or decrease the pitch by a
semitone.

The following tones are available:

CDEFGAHBcdefgahb

The symbols # and & are used for prefix.

A pause (no tone) can also be generated using the letter P.

The following values can be used for the duration of a tone or pause d:

12345678

where the durationis 0.5 in each case

5s
d

10 A$="G4E4E2F4D4D2C4DAE4F4G4#G 162"
20 PLAY AS$,5

Purpose:

Syntax:

Remarks:

Note:

Related
commands:

Command

Program Output via the Centronics Interface
A program can be output on the printer interface using the PLIST command.

PLIST [n] [-[m]]

PLISTn-m output fromlinen up tolinem

PLIST n- output from line n up to end of program
PLIST -m output from start of program up to line m
PLIST n output of line n

With this command it is possible to specify line numbers which define the start and
end of the program output.

For obtaining a page formatted output, see command FORM [m - n].

LIST, FORM

Purpose:

Syntax:

Note:

Related

instructions:

Instruction

Writing into Memory Locations

The following BASIC instruction is used to write a byte to a memory location:

[n] POKE a,b

n: line number, also including label
a: address of the memory location (-32768 to 65535)
b: value to be written between 0 and 255

Parameter a only specifies the address offset. The address segment can be
previously selected using the SEGMENT statement. A negative number as address is
not taken as negative offset but as a number greater than 32767.

Random overwriting of memory locations leads to the corruption of the operating
system and the BASIC code.

SEGMENT, PEEK, VARPTR

POLYLINE

Purpose:

Syntax:

Remarks:

Possible

error message:

Reason:

Graphics instruction

Draws a Train of Lines

Draws a train of lines the end points of which have been fixed in an integer field.
The field contains relative x,y coordinates (A values).

[n] POLYLINE a,v%(b)

n: line number, also including label

a: number of lines to be drawn

v%: integer field with Ax*4, Ay*4 [, Axi*4, Ayi*4]...
b: first fieid element to be used

This instruction draws so fast because the coordinates are not converted with the
VIEWPORT and WINDOW parameters. The field must therefore contain values
which comply with the absolute screen coordinates; for the x-axis, i.e. from 0 (or -
80+ 4 = -320) to 399 + 4 = 1596 and for the y-axis from 0 to 639 = 4 = 2556. The
graphics cursor for example uses a preceding MOVE command to specify the
starting point of the trace which allows to shift the trace easily over the screen. The
first line is drawn using the first pair of Ax/ Ay, the second with the next pair and so
on until the number a is reached. ‘

Error 20: "redimensioned array”

The number of available field elements must at least be twice the number of lines.
E.g.,if a = 10 DIM must be v% (at least 19) if drawing is to start from element 0 (b
=0). -

Purpose:

Syntax:

Remarks:

Example:

Character Output on the Screen

Transfers data to the screen, in particular character strings and variable lists or

expressions.

The PRINT instruction is also used for setting the cursor, setting the attributes and
deleting lines and the screen. These functions are controlled using the ANSI
functions described in the Section "Screen Function".

[n] PRINT [1ist of expressions] [:] or [,]

n: line number, also including label

Numeric or string variables can be written directly after the PRINT statement.
Several expressions must be separated by semi-colons or commas.

A carriage return and line feed (CR + LF) are automatically generated after each
PRINT statement. The next PRINT statement starts at the beginnning of a line. A

PRINT statement without any subsequent expression thus generates a blank line.

" can also be used instead of PRINT. The instruction LIST, however, outputs PRINT

rather than

100 PRINT
200 PRINT A
300 PRINT AS

Every twentieth print position is internally pretabulated. A comma after the
numeric or string expression causes the next character to be written in the next
tabulated position. Carriage return and line feed are suppressed.

100 PRINT "FREQ.

Instruction

IN", AS,A

Example:

Example:

Related

instructions:

Carriage return and line feed will also be suppressed-if a semi-colon follows the
expression. The numbers or strings are linked together.

Furthermore, the screen attributes are set by means of the PRINT instruction and
ANSI sequences. The available sequences are described in the respective device-
specific manual.

Output of a remark as a flashing display:
160 PRINT "E[5m S1 OFF"

110 PRINT "E.[Om": REM RESET ATTRIBUTS
Clearing the screen:

100 PRINT "E[2J"

PRINT#

. PRINT USING

Instruction

Formatted Output

Purpose: Outputs numbers in a format specified by a character string.

Syntax: PRINT USING s$, [or ;] list
PRINT#a, USING s$, [or ;] list

Remarks: Each element of the list is output formatted with the string s$. The string comprises
a sequence of dummy values which define the format of a number.

Possible string elements:

Dummy value for a digit. A right overflow is rounded off; a left overflow
causes output of the unformatted number.
Unoccupied positions before the decimal point result in spaces and after the
decimal pointin 0.

Dummy value for decimal point.

* Must be present before the first #. Unoccupied positions before the decimal
point are replaced by * (e.g. for filling out spaces before the amount:
***100.- DM).

+ Dummy value for the sign. Can be positioned before or after the number.
Positive value results in + Negative value results in -.

- Dummy value for the sign. Can be positioned before or after the number.
Positive value results in space. Negative value results in -.

T Dummy value for the exponent. Must be present after the last #.

Example: 10 PRINT A,B,C.D

3.14159265359 -199.99999999 1.234E-4 7.89E+17
10 PRINT USING "###.#" ,A,B,C.D

3.1 200.0 0.0 7.89E+17
10 PRINT USING "*#####.##" ,A,B,C,D
sese3 14 *2200.00 sese0 00 7.89E+17
10 PRINT USING "+####.##" A.B,C,D
+ 3.14 - 200.00 + 0.00 7.89E+17
10 PRINT USING "#####.##-" A,B,C.D

3.14 200.00- 0.00 7.89E+17
10 PRINT USING "+~ =<.##%1",A,B,C,D
+3141,59E-3 -2000.00E-1 +1234.00E-7 +7890.00E14
Related

function: STR$

http:zOO.oo-0.00

-

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Possible

error message:

Reason:

PRINT#

Instruction

Writing to a File or Interface

Once the file has been opened (see OPENO), PRINT# instructions can be used to
transfer data to the selected file on the floppy disk or fixed disk via the interface.
Several items of data can be present in one PRINT instruction, each separated by a
semicolon or a comma.

[n] PRINT# a,[list of expressions][:] or [.]
[n] PRINT# a, USING s$, [1ist of expressions] [;] or [,]

n: line number, also including label
a: channel number (1to 15)

Using this instruction, all numeric and string expressions are serially written into
the file.

No separators are transmitted between the expressions separated by a semicolon.
LF and CR are transmitted at the end of the instruction. These can also be
suppressed by a semicolon at the end of the instruction. If separators are required
between the expressions, they can be set between quotation marks, e.g. PRINT A;
",7.B)

If the data are then to be read using an INPUT# instruction, it must be remembered
that not more than 80 characters may be written before the delimiter CR LF.

OPENO#, CLOSE#

90 OPENO# 1,"DATA.ASC"
100 ‘PRINT# 1,AS
110 CLOSE# 1

Output of several data sets
200 PRINT# 1,A$;16%(X%2);"KHZ"

Output of other delimiter
300 PRINT# 1,A$;CHR$(32);

ERROR 55: "file not open for output”

The file to be written to has not been opened.

Purpose:

Syntax:

Related

instructions:

Graphics instruction

Drawing of Lines with Relative Coordinates

This instruction acts in the same manner as the DRAW instruction, except that the
coordinates x and y refer to the current position of the cursor (A values) and not to
zero.

[n] RDRAW x,y

n: line number, also including label
x,y: numeric expressions for the x/y coordinates of the destination point

DRAW, MOVE, WIDTH, SET

© Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Possible

error message:

Reason:

Instruction

Read Data

The characters of the DATA lines are read in up to the first comma by means of the
READ statement and assigned to the numeric or string variable.

[n] READ vy [,vn]

n: line number, alsoincluding label

v: numeric or string variable

Several variables can be read at a time with the READ statement. The READ
statements may be present at different places in the program. A pointer indicates
the last DATA character read and reading is recommenced at this position with the
next READ statement.

DATA, RESTORE

100 DATA 123,456
110 DATA 789
130 READ A : PRINT A

Output: 123

ERROR 39: "out of data”

An attempt has been made to execute more READ statements than data available.

This page has been kept free on purpose. The BASIC instruction of an option may be inserted at this
place. The pages to be inserted are found in the manual of the respective option.

Purpose:

Syntax:

Remarks:

Note:

Example:

Instruction

Remark

It will be useful to provide a program with comments or with a heading if complex
problems have to be solved using a large number of subroutines. The REMARK
instruction is used for this purpose.

[n] REM any character sequence
[]: ' any character sequence

n: line number, alsoincluding label

With the REM statement, all subsequent characters are ignored and the next line is
then processed. The characters do not influence the program run, but appear in the
listing and thus facilitate programming. Programmers with practice use the
instruction for program debugging in locating unwanted statements. The
instructions are retained, but are not processed by the controller. The section of the
program can be incorporated again by deleting the REM statement. The REM
statement together with the subsequent characters must not be longer than 80
characters. The apostrophe character is equivalent to REM.

"' is part of the remark and does not separate instructions.

100 REM ®**® SUBRQUTINE 1 ®eee
120 ' Evaluation of measurement

- RENUMBER

Purpose:

Syntax:

Remarks:

Examples:

Possible
error message:

Reason:

 RENUMBER

Command

Renumbering of Lines

Further lines must often be inserted into an already existing program. This will only
be possible, however, if the interval between line numbers is greater than 1. If this
is no longer the case, larger intervals can be generated again by renumbering using
the instruction here described. (The jump addresses with the instructions THEN,
GOTO, GOSUB, and RESTORE are also modified according to the new numbering.)

RENUMBER [mi] [-[m2]] [.n[.An]]

n: new firstline number

An: increment

m;: old line number at which renumbering is started

m3: old line number up to which renumbering is carried out

Default values: n = 10
An = 10

An area (from my; to mj) within a program can be renumbered using this
instruction. The sequence of lines cannot be changed with this instruction! Blocks
can, however, be combined in any sequence by renumbering and loading them
onto a floppy disk (ASAVE, ALOAD).

Renumber the complete program to initial line 10 and step size 10.
RENUMBER

The program part from line 25 to Ime 333 inclusive is renumbered to initial line 10
and step size 10.

RENUMBER 25-333

The complete program is assigned the step size 20 and the initial line 100.
RENUMBER, 100, 20

The program part from line 25 to line 333 inclusive is assigned the new initial line
100 and the step size 20.

RENUMBER 25-333, 100, 20

"Lines nested"”

The new line number range would cover up already existing line numbers.

K—

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

REPEAT (UNTIL)

Instruction

Loop Instruction/Structure Element

- Defines a loop with any number of lines (instructions) which will be repeated until

the condition specified at the end is true.

[n] REPEAT
[n] instruction

[n] instruction
[n] UNTIL a

n: line numbers, also inciuding labels
a: expression

This loop is executed once in any case (contrary to WHILE-WEND). The expression is
calculated at the end of the loop and, if the result is false (i.e. 0), the program will
again branch to the line with the associated REPEAT instruction. If the result is true,
the program will be continued with the instruction following UNTIL.

Nestings, even with different structure elements, are permissible. In this case, the
inner loop instructions should be indented to ensure better readability. GOTOs into
loops and out of loops should be avoided, if possible.

WHILE-WEND, FOR-NEXT

10 Min=3: Max=20

20 REPEAT

30 INPUT "INPUT(3...VALUE...20):",VALUE
40 UNTIL Value>=Min AND <=Max

10 Factor=1

20 REPEAT

30 PRINT Factor

35 Factor=Factor®1.1
40 UNTIL Factor>=10

Sorting program (Bubble-Sort)

10 REPEAT

20 Flips=0

30 FOR I=1 TO J-1

40 IF AS(I)>AS(I+1) THEN

50 B$=A$(I): AS(I)=A$(I+1): AS(I+1)=B$:REM SWAP
60 Flips=1

70 ENDIF

80 NEXT I

90 UNTIL Flips=0

Purpose:

Syntax:

Remarks:

Related

commands:

Example:

Note:

Command

Replacing Text Passages

The text passage to be replaced is first searched for in the line range given. When
found, the line is output on the screen and the new text is substituted for the text
passage to be replaced. After pressing of the return key the new line is returned to the
program.

REPLACE [n-m,] t1, t2

n-m: range of lines in which the search is conducted. If it is not entered, the search will

be executed in the complete program. -
t1: textsearched for to be replaced e
t2: new text

If any other key than the return key is pressed following this command, it will possible
to change the line with the screen editor as is also the case with the SEARCH command.
The line changed is returned to the program using the return key and the next line is
searched for in the range given and then output.

The text t1 to be replaced must be written exactly as it appears in the listing, i.e.
keywords must be written in upper-case letters and the first letter of variable names
must be capitalised. Also the blank spaces are important. As to the replacing text, the
notation is arbitrary. BASIC again verifies the correctness of the entire line with regard
to mistakes in syntax, as is also done when a new line is entered.

PLIST, COPYQUT, OPENO LPT

REPLACE Cn, Count
REPLACE 100-200, Cn, Count
replaces the variable name Cn by Count in the line range from 100 to 200 inclusive.

REPLACE 1000-2000, 3.14, PI

REPLACE, 3.14, PI
replaces the figure 3.14 by the variable PI in the entire program.

The comma is separator and cannot be part of the text to be replaced.

w

RESTORE

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Note:

Instruction

Restore Data Pointer

RESTORE can be used if data are to be read from the beginning with further READ
lines or from particular DATA lines.

[n] RESTORE [m]

n: line number, also including label

m: line number to which data pointer is set

If RESTORE contains no line numbers, the pointer will be set again before the first

character of the first DATA line and with the next READ the first data are read.

With a specified line number given in the RESTORE instruction, the data pointer is
set to the first character of the DATA line following the given line.

If a line number has been specified with the RESTORE instruction, the data pointer

is set to the first character of the DATA line indicated, or, if not existent, to the next
following DATA line.

READ, DATA

Set data pointer to line 200

100 DATA 1, 2, 3, 4, 8, 255

200 DATA TEXT, PRO6, START, DEF
210 READ A,B

220 RESTORE 200

230 READ A%

AS = "TEXT"

RUN automatically executes the RESTORE instruction.

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Possible
error message:

Reason:

Instruction

Return from the Subroutine

This instruction indicates the end of a subroutine. The program is contirued with
the next line following the GOSUB call.

[n] RETURN [a]

n: line number, alsoincluding label
a: level

The parameter a optionally specified indicates the level to be returned to. If no
parameter is indicated, the program will be continued with the instruction
following the calling GOSUB. With positive numbers, level a is selected with 0 as
the highest level - in general the main program - and the level is incremented
following each GOSUB. The following example branches back into the main
program, e.g. following an error handling.

100 RETURN 0

With negative numbers, a levels are skipped. RETURN -1 is thus equivalent to
RETURN without parameter. RETURN -2 returns to the last but one GOSUB etc.

GOSUB, ON GOsus

100 A=5:8=1:GOSUB1000:PRINT"RESULT",U
110 END

1000 REM SUBROUTINE

1100 U=(A+B)*3: RETURN

ERROR 34: "RETURN without GOSUB"

RETURN has been reached without a previous GOSUB, e.g. if 110 END were left out
in the example above.

RIGHT$ RIGHTS

String function

Separate Last Character from a String

Purpose: Similarly to the LEFT$ function, this function is used to read a number of characters
specified in this function and process characters from the right-hand end of a
string, the start of the string being retained.

Syntax: RIGHTS$(s$,.a)

s$: string variable or string constant
a: number of characters

Related
instructions: LEFTS, MIDS
Example: 100 A$="PROCESSCONTROLLER":PRINT RIGHT$(AS,6)

Display: ROLLER

Purpose:

Syntax:

Related

instructions:

Graphics instruction

Moving the Graphic Cursor

This instguction acts in the same manner as the MOVE instruction except that the
coordinates x and y refer to the current position of the (imagined) pencil (A-values)
and not to zero.

[n] RMOVE x,y

n: line number, also including label
x,y: numeric expressions for the x/y relocations

MOVE, DRAW, RDRAW, LABEL, AREA

-

Purpose:

Syntax:

Remarks:

Example:

Numeric function

Random Function

BASIC is provided with a random number generator which generates pseudo-
random numbers between 0 and 1. The generator is called up using RND (random).
RND(a) ,

a: constant, variable or numeric expression

3 different modes can be used:

1) a negative
RND with a negative argument always assigns the same random number to
each a. The random numbers can then be reproduced, which may be useful
for program development or troubleshooting.

2) a=0
The RND function repeats the last value.

3) apositive
With a positive argument, the RND function provides the next number in
sequence.

100 Y=RND(X)

Electronicdice

100 W=INT(6*RND(1))+1:PRINT W

In order to obtain a changing random number following RUN (randomize), the

following line is used:

10 A=RND(-VAL(RIGHTS(TIMES,2))/1000)

Purpose:

Syntax:

Remarks:

Syntax:

Remarks:

Related
command:

Example:

Note:

Command

Program Start

The RUN instruction is used to start a program aiready in store. The controller then
executes the program starting with the first line.

RUN

The following is used if the program is to be started at a higher line and not at the
beginning:

RUN m

m: line number to be started at

All variables, field variables etc. in the memory are deleted when the RUN
command is executed so that the controller is present in the same status at the
beginning of the program as that following loading of the BASIC interpreter. All

the basic statuses described in the respective instructions are set. In particular, files
which may still be open are closed (CLOSE).

CONT

RUN

RUN1200

RUN can also be entered by pressing the softkey 2.

R—

Syntax:

Remarks:

Related
instructions:

Example:

Note:

Instruction

Saving Programs

[n] SAVE s$ [.P]

n: line number, also including label
s$: program name, also with drive and search path
P: character P or p saves program ('protected’ storage)

The program present in the main memory of the computer is saved on floppy disk
or fixed disk following this instruction.

Max. 8 characters and one extension separated by a dot may be entered as program
name, i.e. the file name must be in accordance with the MS-DOS format. If no
extension is used (i.e. a name without dot), BASIC will automatically use the
extension ".BAS”. If the program name is to remain without an extension, ".” must
be written as last character.

Following loading a program protected by the parameter 'P' can neither be looked
into with LIST or PLIST, nor be stored in ASCIl form with ASAVE. Attempts to do so
cause the error message:

‘protected file loaded!".

A protected program can load further programs with CHAIN and vice versa, also
protected programs can be reloaded with CHAIN, but in those cases the whole
program is handled as protected program.

LOAD, ASAVE

1. Saving the BASIC program on the default drive
SAVE "TEST.BAS"

2.Saving on the fixed disk drive

SAVE "E:TEST.BAS"
SAVE "E\USER\TEST.BAS"

3. Protected saving of program:
SAVE "PROT.BAS",P

Contrary to the ASAVE command, the SAVE instruction stores the interpreter code
of the BASIC on floppy disk or fixed disk. This is shorter than the LIST file and need
not first be translated when loading.

Purpose:

Syntax:

Remarks:

Instruction

Increase in the BASIC Run Speed
Increasing the BASIC run speed in the first run.

[n] SCAN

n: line number

So as to approximate the speed of the BASIC interpreter to the speed of a compiler
the jump destinations of GOTO/GOSUB instructions are filled in tables so that they
need to be searched for only once in the user program. Thus, the first run of the
program following RUN lasts slightly longer, because the table is only gradually
completed. In case of highly time-critical programs when the program has to be
executed also in its first run at maximum speed, the completion of the table of
jump destinations may be forced by means of the SCAN-command before starting
"RUN".

Particularly long programs having many jump branches require a search in the
program of several seconds.

-

~—
Purpose:
Syntax:
—
Remarks:
4
-

_ SCREEN ©

Graphics Instruction

Setting the display mode

The graphics adapters for the PSA/PAT controllers support different operating
modes. The respective operating mode also depends on the kind of monitor
connected. After power on the hardware is checked in the following order and
SCREEN set to the optimum value: 18 (VGA), 17 (VGA S/W), 16 (EGA), 15 (EGA SW),
8 (Herc.) and 6 (CGA). This instruction is used to switch over to another mode for
test purposes.

[n] SCREEN a

n: line number, also including label
a: expression for the mode according to the description below

SCREEN 3

Alphanumeric mode defined by IBM, which is available on each hardware (CGA,
EGA, VGA and MCGA) and compatible to the software.

Alphanumeric resolution: 25 lines, 80 characters per line

Attributes: 8 foreground and 8 background colors (only in case of graphics color
monitors), foreground brightness, blinking.

1 status line (and 3 softkey lines); scrolling range 24 (21) lines.

SCREEN 4

CGA (color graphic adapter) mode defined by IBM. This mode is also emulated by
the EGA and VGA hardware.

3 colors + background of 2 selectable palettes.

Alphanumeric resolution: 25 lines, 40 charasters per line.

1 status line (and 3 softkey lines); scrolling range 24 (21) lines.

Graphics resolution: X-axis 320 pixels, Y-axis 200 pixels.

Colors: 2 palettes with 3 colors and one background color (black) each

Special features: The color code is stored with 2 bits per pixel. The information
about color graphics contained in the description of the SET

and COLOR instruction is not relevant for this mode; there are
no 4 planes per pixel.

only

Graphics Instruction

COLOR x,N,x,x selects palette 1 of N using even numbers and paiette 2 using odd
numbers. The x-parameters are variables.

SET a,N selects the follwing colors:

N palette 1 palette 2

0 black black
(backgrounc' | (background)

1 violet yellow

2 cobalt blue red

3 white green

LABEL a$,N creates the same character size with N=0 and N=1 , since the
resolution in the x-direction is not sufficient for size 0.

SCREEN 6

CGA black/white mode, which is also emulated by the EGA and VGA hardware.
Colors: black/white

Alphanumeric resolution: 25 lines, 80 characters per line.

1 status line (and 3 softkey lines); scrolling range 24 (21) lines.

Graphics resolution: X-axis, 620 pixels, Y-axis 200 pixels.

SCREEN7

Alphanumeric mode defined by Hercules, which is emulated by the muitifunction
board.

Alphanumeric resolution: 25 lines, 80 characters per line.
Attributes: foreground brightness, blinking, underlining.
1 status line (and 3 softkey lines); scrolling range 24 (21) lines.

Special

features: The Hercules board and compatible boards directly support this mode. A few other
muitifuntion boards must first be prepared by means of the HERCMOD.COM

program, e.g. by adding \basdrv\hercmod to the AUTOEXEC.BAT file.

http:HERCMOD.COM

Graphics Instruction

SCREEN 8

Graphics mode defined by HERCULES, which is emulated by the multifunction
board.

Colors: black/white

Alphanumeric resolution: 25 lines, 80 characters per line.

1 status line (and 3 softkey lines); scrolling range 24 (21) lines.

Graphics resolution: X-axis 720 pixels, Y-axis 348 pixels.

Special features: The Hercules board or compatible boards support this mode. A
few other multifunction boards must first be prepared by
means of the HERCMOD.COM program, e.g. by adding
\basdrv\hercmod. to the AUTOEXEC.BAT file.

For alphanumeric outputs in graphics mode the support
routines must be resident. This is achieved by means of the

program HERCSUP.COM, e.g. by adding \basdrv\hercsup to the
AUTOEXEC.BAT file.

SCREEN 14

EGA (Enhanced Graphics Adapter) mode defined by IBM for low resolution displays
(15.75 kHz), which is also emulated by the VGA hardware.

Colors: 16 of a 64-color palette.

Alphanumeric resolution: 25 lines, 80 characters per line.

1 statusline (and 3 softkey lines); scrolling range 24 (21) fines.
Graphics resolution: X-axis, 640 pixels, Y-axis 200 pixels.

Special features: COLORT, r, g, b offers only 4 saturations for each of the 3 basic
colors. They are assigned as follows for reasons of

compatibility:

r,g.b color saturation
0,1 lowest

2,3

4,5,6,7

8to 16 highest

http:HERCSUP.COM
http:HERCMOD.COM

scaeen

Graphics instruction

SCREEN 16

EGA graphics mode defined by IBM for medium resolution displays (21,85 kHz),
which is also emulated by the VGA hardware.

Colors: 16 of a 64-color palette

Alphanumeric resolution: 25 lines, 80 characters per line.

1 status line and 3 softkey lines; scrolling range 24 (21) lines.
Graphics resolution: X-axis 640 pixels, Y-axis 350 pixels.

Special features: COLORf, r, g, b offers only 4 saturations for each of the three
basic colors r,g,b. They are assigned as follows for reasons of

compatibility:

r,g,b saturation
0,1 lowest
2,3

4,5,6,7

8to 16 highest

SCREEN 17

MCGA (Multicolor Graphics Array) and VGA (Video Graphics Array) mode for the
high resolution monochrome monitor (31,5 kHz). This mode is compatible to a
large extent to the PCA controller graphics without color option.

Alphanumeric resolution: 30 lines 80 characters per line.

5 status and softkey lines; scrolling range 25 lines.

Graphics resolution: X-axis 640 pixels, Y-axis 480 pixels.

SCREEN 18

VGA mode defined by IBM for the high resolution monitor (31,5 kHz). This mode is
to a large extent compatible to the PCA controller graphics with color option PCA-
B3. :

Colors: 16 of a 256000-color palette

Alphanumeric resolution: 30 lines 80 characters. per line.

SCREEN

- SCREEN
v B
Graphics Instruction
5 status and softkey lines; scrolling range 25 lines.
Graphics resolution: X-axis 640 pixels, Y-axis 480 pixels.
Special features: COLOR f, r, g, b offers 64 intensitiy degrees for each of the
three basic colors r,g,b;the range of numbers defining the
color portion is thus increased to 64.
SCREEN 19
VGA or MCGA mode defined by IBM for the high resolution monitor (32.5 kHz)
- with low resolution graphics but extended color options.
Colors: 256 of a 256000 color palette.
Alphanumeric resolution: 25 lines, 80 characters per line.
1 status line (and3 softkey lines); scrolling range 24 (21) lines.
Graphics resolution: X-axis 320 pixels, Y-axis 200 pixels.
Special features: COLOR f, r, g, b offers 64 saturations for each of the three
basic colors r,g,b; the range of numbers defining the color
portion is thus increased to 64.
Survey of the modes
R
SCREEN | mode pixels colars/ palette | 2IPRANUM. | oo | pay
grey level characters
3 alphanum. 80 x 25 +
4 CGA 320 x 200 4 2 40 x 25 °
6 CGA 640 x 200 biw . 80 x 25
7 Herc 80 x 25 +
8 Herc 720 x 348 bw - 80 x 25 +
14 EGA 640 x 200 16 64 80 x 25
16 EGA 640 x 350 16 64 80 x 25]
17 MCGA 640 x 480 bw - 80 x 30
18 VGA 640 x 480 16 256 000 80 x 30 +
19 VGA 320 x 200 256 256 000 40 x 25 °

+ recommended, ® possible

SEA

Purpose:

Syntax:

Remarks:

Related
command:

Example:

SEAR

Command

Search for Certain Texts

The SEARCH command enables all lines of a BASIC program to be output on the
screen which contain a certain text. For example, all lines can be listed which
contain a PRINT or INPUT statement or a particular variable.

[n] SEARCH [n - m,] t
n-m: range of lines to be searched The complete program will be searched if

this is not entered
t: text searched for

A line is output on the screen when found. It is possible to modify this line using the
screen editor. The modified or unmodified line is returned to the program using
the return key and the next line is searched for in the range specified and then
output.

The search text must be written exactly as it appears in the listing, i.e. keywords

must be written in upper-case letters and the first letter of variable names must be
capitalized, etc. Also the blanks are important.

REPLACE

SEARCH GOSUB
SEARCH 100-200, GOTO
searches for the word "GOTO" between lines 100 and 200.

SEARCH 100-200, 888
SEARCH , 888

searches the complete program for the number 888

Purpose:

Syntax:

Related
functions:

Example:

Remarks:

SEGMENT

Instruction

Determining the Segment

The CPU used in this controller requires information on the address within a
segment as well as the segment position in order to determine addresses. The
segment is specified using the SEGMENT instructions and a subsequent integer.

[n] SEGMENT a oder DEF

n: line number, also including label
a: segment address (-32768 to 65536)
DEF: keyword for default setting

POKE, PEEK, VARPTR

10 SEGMENT HEX("12F3~)
100 SEGMENT DEF

Following RUN, the segment is initialised to the value of the BASIC variable
memory.

PEEK, POKE, VARPTR and CALL are therefore used to reach memory locations
within the 64K variable memory.

The position (the offset) of a variable, which can be determined using the function
VARPTR (), refers to this initialised segment address.

DEF is a keyword which, together with the SEGMENT instruction, causes the
segment address to be reset to the BASIC variable memory. DEF should only be used
in association with SEGMENT.

Purpose:

Syntax:

Remarks:

Example:

Example:

Graphics instruction

Types of Display

The SET instruction specifies the type of representation used for drawing with the
following instructions. (The INVERT instruction, on the other hand, inverts the
screen output).

[n] SET a [,b] [.c]

line number, also including label

blanked characters

inverted characters

unblanked characters (default)

dominant color (only with color graphics option)

color pen 0 to 15 (or 255" (defauit 1): must be set to 1 if no color graphics
option is installed

c: 1 = blank graphics, fast drawing (only PCA)

0 = display graphics (default)

2 = switch off built-in screen

oo oo o3
oo
N = O

*) see SCREEN instruction

Blanked characters are drawn using SET. This instruction is used to delete individual
lines or points or to draw blanked characters on the unblanked screen.

SET-1 subsequently inverts everything drawn, which means that unblanked dots
are blanked and blanked dots are unblanked. Inversion continues until the SET-1
instruction is replaced by a different SET instruction.

The central part of a line is deleted.

100 MOVE 20,100
110 ‘'DRAW 300,100
120 HOLD 1000
130 SET 0O

140 MOVE 110,100
150 DRAW 210,100

A line is continuously inverted.

100 CLEAR

110 SET -1

120 MOVE 160,20
130 DRAW 160,179
140 HOLD 100

150 GOTO 120

SET1 corresponds to the usual setting of the controller, i.e. unblanked characters are
drawn on the blanked screen. This instruction is used to reset the normal type of
display following SET 0 or -1.

Summarizing, the following applies to the first parameter a:
® SET only refers to the type of display of DOT, DRAW, LABEL, AREA and RDRAW.

® The SET instruction continues to apply in the program until deleted by another
SET instruction.

] SET1 is the default setting upon switching on the controller.

The parameter b is used to select the color memory with which all following graphic
instructions are to be executed. Only 1 may be specified as the parameter without the
~ option PCA-B3. 16 color values dispiayed simultaneously (b = 0 to 15) are available
with PCA-B3 (see SET using color graphics option).

The graphics can be blanked using the parameter ¢, e.g. in order to output the ASCII
characters (PCA). Graphic instructions can still be used to write into the graphics
memory even if the graphics is blanked. This takes place at a higher speed and can
therefore be used for a faster production of graphics. i

In the case of ¢ having the value 2, the built-in screen is switched off, e.g. to further
reduce the RF leakage. The horizontal deflection is switched off and thus also the
generation of high voltage. If ¢ = 0 or 1, the screen will be switched on again.

SET Using Color Graphics
(Option PCA-B3 or VGA and EGA mode for PSA and PAT)

The color of every point of the color graphics is determined by four memories (planes). Thus, 16 colors
can be displayed simultaneously. The parameter b of the SET instruction selects the pen to be
subsequently used for drawing. The color of this pen which will then be displayed on the screen is
only determined by the COLOR instruction (4096 possibilities) (see COLOR).

Pens 1, 2, 4, 8 draw particulary fast because only one bit is set in each of these binary numbers and,
only one plane needs therefore be written to. Pen 15 is the slowest.

If two color areas drawn with different colors overlap, e.g. the figures drawn with pens 2 and 4, the
overlapping area has the same color as pen 6. The area where two colors overlap takes on the color
which is produced by logical ORing of the binary numbers of the individual pens.

What has been said so far applies to the non-dominant mode which will be set if the parameter a of
the SET instruction has the values -1 (inverted drawing), O (reset dots) or 1 (set dots). If the parameter
a has the value 2, the dominant mode is cut in. The figure drawn takes exactly the color that
corresponds to the pen; colors drawn first disappear. Thus, all four planes must always be used, which
is why the speed of drawing decreases just as is the case with pen 15 in the non-dominant mode.

Related
instructions: COLOR, WIDTH, DRAW, RDRAW, AREA, LABEL, DOT, SCREEN

Purpose:

Syntax:

Remarks:

Example:

Numeric function

Sign Function

If only the sign of a number or function is of interest, it will be gained using the
SGN function.
SGN(a)

a: numeric expression

The SGN function provides the following results:

1 fora>0
0 fora=0
-1 fora<o0

SGN(a)

100 B=SGN (A)

Purpose:

Syntax:

Remarks:

Related

instructions:

Example:

Instruction

Operating System Call

Loads and starts other MS-DOS programs (e.g. with the .COM, .BAT or .EXE
extension). After completion of these programs, BASIC continues with the next
instruction after SHELL. SHELL entered in direct mode permits access to the
command interpreter of MS-DOS via the keyboard.

[n] SHELL [s$]

n: line number, also including label
s$: string transferred to the command interpreter of MS-DOS, optionally with
further parameters for the program to be called.

Using the SHELL instruction without string as parameter, the command interpreter
is loaded from the mass storage and called up. MS-DOS registers e.g. with “"E>".
Then all MS-DOS programs such as DIR, COPY, DEL, CHDIR, PRINT, etc. can be called.
To return to BASIC, enter the word EXIT. Command files can also be started in this
manner. In this case, EXIT must be the last instruction of this file.

BYE, DIR

SHELL .

A>DIR (MS-DOS waits for a command to be entered; in this case, user types
'DIR) :

ADEXIT (user wants to return to BASIC).

The same result is obtained by means of the following entry:

SHELL "DIR"
SHELL "DIR * BAS" (provides all files with the extension .BAS)

Example:

Note:

The following example generates a file, e.q. with measured values, calls the sort
program and then processes the sorted values, e.g. for graphic output.

100 OPENO#1, "MESSIN.DAT"
110 REM Writing the data

200 CLOSE#1

210 SHELL "SORT <(MESSIN.DAT >MESSOUT.DAT"
220 OPENI#1, "MESSOUT.DAT"

230 REM Reading the sorted data

This instruction is used to load the command interpreter of the operating system
from the mass memory into the main memory. The command interpreter must
therefore be available in the default directory, for otherwise MS-DOS will respond
with “general failure”. COMMAND.COM can be loaded from a different directory
by means of

SET COMSPEC = E:\COMMAND.COM

in the file AUTOEXEC.BAT. In this example, BASIC will attempt to load the
command interpreter from the root directory of drive E:.

If the available memory location for loading the COMMAND.COM file is no longer
free (e.g. in case of a too small memory capacity or a very large virtual drive), MS-
DOS will signal “generale failure”.

http:COMMAND.COM
http:E:\COMMAND.COM
http:COMMAND.COM

Purpose:

Syntax:

Related

functions:

Example:

Numeric function

Sine Function
To generate the sine value of the argument in radian measure.
SIN(a)
a: constant, variable or numeric expression
C0S, TAN, ATN, PI

100 C=SIN(A)

An argument specified in degrees can be modified by conversion.
100 C=SIN(A*PI/180)

if the argument is specified in centesimal degrees, the conversion will be as follows:

100 C=SIN(A®PI/200)

SOFTKEY

Instruction

Restoring the Softkey Labelling

Purpose: If the user has deleted the softkey labelling, e.g. because he labels the softkeys
according to his special needs, the softkey labelling as it appeared in the two
bottom lines after calling BASIC can be restored using this instruction.

Syntax: [n] SOFTKEY
n: line number, also including label

Example: 100 PRINT "Ec[y":REM Deletion of softkey labelling
110 PRINT "EcR1 Ja ":REM new labelling
200 SOFTKEY :REM Restoring the softkey labelling

(See section 1.3.3)

Purpose:

Syntax:

Example:

Possible

error message:

Reason:

Numeric function

Square Root Function

The square root of the argument is generated using SQR.

Math.:

o

SQR(a)

a: constant, variable or numeric expression

100 Y=SQR(X)

ERROR 31: "numeric overflow"

Negative argument a

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Instruction

Stop Statement

The STOP statement can be used e.g. when debugging programs in order to stop
the program at a critical point and to read variables. The program can subsequently
be continued using the CONT command.

[n] sTOP

n: line number, also including label

The STOP statement also differs from END in that the line number in which the
program has been interrupted is also output.

END, TRACE, CONT

100 STQP

Output onscreen: STOP IN LINE 100

Purpose:

Syntax:

Related

functions:

Example:

Remarks:

String function

Conversion of Numeric Variables into String Variables

Contrary to the VAL function, also numeric expressions can be converted into string
variables, e.q. to insert numbers into string variables.
STRS(a[,USING s$])

a: constant, variable or numeric expression
s$: String comprising dummy values for formatted output (see PRINT USING)

VAL, PRINT USING

50 A$=STR$(B)

100 A$=STR$(B+12.5)

120 AS=STRS (B, USING"##.##")
200 IECOUT3,STRS(A1,USING"###")

STR$ with USING must not be part of a string linkage. The following is therefore
not permissible:
A$ = "FR" + STR$ (B, USING "##. ##")

When the formatted number does not match with the format, no error message is
output but "USING" is ignored.

Purpose:

Syntax:

Remarks:

Example:

Note:

Function

Distance from Left Edge of Screen

The TAB function of the PRINT statement serves the purpose of printing characters
at a preset distance from the left edge of the screen.

TAB(a)

a: constant, variable or numeric expression (0 to 79)

The parameter a can be a constant, variable or expression with decimal places
being left out. If the write position assigned by the TAB instruction is already
occupied by a previous PRINT statement, printing is carried out at the next free
position. The TAB instruction must be separated from the other expression by a
semicolon. :

100 PRINT "MEASURED VALUE";A;TAB(17);"IN MS"

Display if A = 1.23456

MEASURED VALUE 123456 IN MS

BASIC cannot read the current interface position. If, e.g., the cursor position was
changed via the Escape sequences or characters output, which cannot be printed,
BASIC cannot reach the write option desired. BASIC is not informed until the next
CR that the internal character counter must be reset.

Purpose:

Syntax:

Remarks:

Related
functions:

Example:

Numeric function

Tangent function

Transfers the tangent of a.

TAN(a)

a: constant, variable or numeric expression

The cotangent function is not available in the instruction set of the controller but
may be generated by a simple conversion.

Math.:
col(x) =
tan(x)
ATN, COS, SIN

100 Y=1/TAN(X)

J

Purpose:

Syntax:

Remarks:

Related
Pseudo
variable:

Example:

Note:

Pseudo variable

Time Measurement

The pseudo variable TIME is available for time measurements and for calculating
the time at high resoiution. The time, starting at midnight, is increased by 1 every
10 ms.

TIME
The relative time is entered by assigning the pseudo variable TIME to a numeric
variable. The system units are hundredths of a second (10 ms).

if the option real-time clock is provided, the time is read out from the option.

The clock is set at the operating system.level.

TIMES, DATES. DATUMS

Measuring of time difference:
100 A=TIME

110 HOLD 1000

120 B=TIME

130 PRINT B-A

The maximum value of TIME may amount to:

100+60+60+24 = 8 640000

Purpose:

Syntax:

Remarks:

Related
Pseudo
variable:

Example:

Pseudo variable

Readout of Time

The absolute time is read out using the pseudo variable TIMES$.

TIMES

The time is transferred as a string with 11 characters in the form

hh:mm:ss.tt

hh = hour

mm = minute

13 = second

tt = hundredth of a second

If the option real-time clock is provided, the time is read out from the option. The
clock is set at the operating system level.

TIME, DATES, DATUMS

100 AS = TIMES

Purpose:

Syntax:

Purpose:

Syntax:

Example:

Purpose:

Syntax:

Note:

Instruction

Program Tracing

The number of each line of a running program is output on the screen before the
line is executed.

[n] TRACE

n: line number, also including label

If TRACE is followed by at least one expression or e.g. a list of variables, TRACE will
change into step mode. Following the execution of each line, the line that has just
been executed and the value of the expressions (or variables) is output on the
lower edge of the screen. The controller waits for further entries; e.g. when CONT
is entered, the program continues until the next line is reached.

[n] TRACE a/s$ [,a/s$]...

TRACE A,B/256, AS(N.M)

The output of the line numbers of the running program activated by the TRACE
instruction is switched off again by the TRACE OFF instruction.

[n] TRACE OFF

The instruction TRACE [] entered in direct mode is maintained after all commands
(like RUN) and must be switched off explicitly using TRACE OFF.

Purpose:

Syntax:

Remarks:

Instruction

TTLI/O Interface Access
This instruction is used to address the option PCA-B11.

[n] TTL 2z IN sS.v
TTL z OUT s$,b

n: line number, also including label

2: number of interface (1 to 3)

s$: string expression for setting the interface

v: numeric variable into which the value is read (typical integer variable)
b: numeric expression for the integer value read

The detailed description of these instructions is part of the PCA-B11 manual. it also
contains pages which may be inserted in this part of in the BASIC manual.

This page has been kept free on purpose. The BASIC instruction of an option may be inserted at this
place. The pages to be inserted are found in the manual of the option concerned.

Instruction

Loop Instruction (End)

See REPEAT instruction.

Purpose:

Syntax:

Remarks:

Related
function:

Example:

Numeric function

Conversion of Strings into Numerical Values

Strings or texts cannot be handled mathematically. Numerical values are, however,
often read into string variables via interfaces. The VAL function serves for the
conversion into a numerical value on which mathematical operations can be
performed.

VAL(s$)

s$: string expression

Leading figures, signs, decimal point and the exponent E are all taken into account

until the first non-numerical character and then processed.

If letters or other characters appear at the first position, these are skipped until the
first character, that can be used, appears.

STRS

100 B$="-1.5E2 DM": PRINT VAL(BS)

Display: -150

200 C$="AG+1.248E19": PRINT VAL(CS)

Display: 1.248E +19

100 C$="AG+1.248E19TEST1": PRINT VAL(CS$)

Display: 1.248E +19

Function

Reading in the Variable Pointer

Purpose Using the function VARPTR, the pointer can be read into the variable specified in v
and the position within the 64 Kbyte BASIC data segment at which the variable is
filed can be found.

Syntax: VARPTR (v)

Remarks: VARPTR specifies the address in the form of an offset. The first address of a variable '
or the string identifier is output. The offset will be valid only if no segment —
instruction has preceded or if the previous setting is reset with SEGMENT DEF.

Related
instructions: SEGMENT, PEEK, POKE
Example: 10 DIM A%(100) 20 PL=VARPTR (A% (0))

The lowest address of field A% is determined with line 20.

10 A$="ABCDEFG"

20 A=VARPTR(AS)

30 N=PEEK(A)+256°PEEK(A+1): REM NUMBER

35 Ad=PEEK(A+2)+256*PEEK(A+3): REM ADDRESS
40 FOR I=Ad TO Ad+N-1: PRINT PEEK(I):: NEXT
100 PRINT

READY
RUN 4

65666768697071

(see section 1.4.4.1)

VIEWPORT

Purpose:

Syntax:

Remarks:

-80

Graphics instructionen

Relative Screen Coordinates,
Display Area of Screen

If the coordinate system selected using the WINDOW instruction is to only fill a part
of the screen, the VIEWPORT instruction is used. It also determines the position on
the screen and the dimensions of the coordinate system:

[n] VIEWPORT x1,x2,yl,y2

n:
x1...y2:
x1:

x2:

yl:

y2:

line number, also including label

numeric expressions for the display limits of the screen
left-hand limit

right-hand limit 0to 639

lower limity2

upper limit -80to 399

(-1238 is the lowest limit in the graphics memory outside the screen).

The range of the absolute screen coordinates (X=0 to 639 and Y =-80 to 399)
always applies to x1 to y2 independent of whether other values have been set using
the WINDOW instruction.

Fig. 2-2 shows the position of the display area using the VIEWPORT instruction.

380

Display area for graphic displays
following execution of instruction
160 viEwPORT 300,600, 160,380

Softkey and status lines

300 600

Fig. 2-2 Display area of screen

Remarks:

Purpose:

Related

instructions:

Example:

Note:

After starting BASIC with RUN, VIEWPORT 0, 639, 0, 399 is initialized. Thus, the lower
limit of the coordinate system defined by WINDOW is above the 5 softkey and status
lines. If the whole screen is to be used for graphics output, this will be achieved using
VIEWPORT 0,639,-80,399. The 0 point of the y axis is then no longer above the status
lines (with WINDOW A,B,0,D), but at the lower edge of the screen. Selecting
WINDOW 0, 639, 0,479 again produces a coordinate system where each dot is
derived from an integer.

Graphic displays with different scales or the simultaneous display of several
functions or curves at different positions on the screen can be carried out easily
using VIEWPORT.

WINDOW, ZOOM

Drawing of two circles at different places of the screen

100 WINDOW -1,1,-1,1

110 CLEAR

120 VIEWPORT 0,199,0,199

130 GOSUB Circle

140 VIEWPORT 200,399,200,398

150 GOSUB Circle

160 END

170CIRCLE:

175 MOVE 1,0

180 FOR Winkel=0 TO PI *2 STEP PI /20

180 DRAW COS(Winkel) ,SIN(Winkel)
200 NEXT ’
210 RETURN

Both instructions WINDOW and VIEWPORT only have an effect on graphic displays
that are generated in the subsequent program run. Displays stored in the video
memory are no longer changed. ‘

Instruction

Loop instruction (end)

See WHILE instruction

. WHILE (WEND')’I WHILE (WEND)

Purpose

Syntax:

Remarks:

Related

instructions:

Example:

Instruction

Loop instruction/structure element

Defines a loop with any number of lines (instructions) which are executed as long as
the condition specified at the beginning is fulfilled (possibly never).

[n] WHILE a
[n] instruction

tn] WEND

n: line numbers, also including labels
a: expression

The expression after WHILE is calculated and, if true (i.e. not 0), the instruction
following WHILE is executed. Otherwise, the associated WEND instruction is
searched for and the following program executed.

Nesting, even with other structure elements, is permitted. The inner loop
instructions should then be indented to ensure better readability. GOTOs into
loops and out of loops should be avoided, if possible.

FOR-NEXT, REPEAT-UNTIL

100 ON ERROR GOSUB Error handling
200 REM Main program

990 END

1000Error handling:

1010 WHILE ERM(0)=73

1020 PRINT "Please check printer”
1030 REPEAT

1040 INPUT "Continue with 'j cr'",AS
1050 UNTIL A$="j" OR A$="J"
1060 WEND

1100 REM Handling of further errors
2000 RETURN

Purpose:

Syntax:

Related
instructions:

Graphics instruction

Drawing of Line Patterns

This instruction allows the drawing of dashed lines or rectangles filled with a
pattern.

The parameter is a 16-bit number in which each bit draws a dot. This pattern
applies to the following DRAW, RDRAW and AREA instructions until it is replaced
by another instruction.

[n] WIDTH a
n: line number, also including label
a=-1: continuous line
BIN$(-1) » 1111111111111 11
a=21845: every second dot is drawn
BIN$(21845) -» 0101010101010101
a=255: dashed (half/half)

BIN$(255) » 0000000011111111

a=-1the default value on power-up

DRAW, RDRAW, AREA, SET, COLOR

Purpose:

Syntax:

Remarks:

Related
instructions:

Example:

Graphics instruction

Relative Screen Coordinates, Display Area of Screen
Determines the coordinate system for the graphics output.

[n] WINDOW x1,x2,y1,y2

n: line number, also including label
x1...y2 are numeric expressions for:

x1 : start x coordinate
x2 : end x coordinate

y1: starty coordinate
y2 : end y coordinate

After starting BASIC with RUN, WINDOW 0, 639, 0, 399 is initialized.

WINDOW refers to the coordinates for the DOT, MOVE, DRAW, RMOVE, RDRAW
and AREA instructions.

VIEWPORT, Z0OOM

Display of a sine curve with relative coordinates.

110 WINDOW -PI,PI,-1.1

120 MOVE -P1,0

130 FOR X=-PI TO PI STEP .0628
140 DRAW X,SIN(X)

150 NEXT

Purpose:

Syntax:

Remarks:

Note:

Related
instructions:

Graphics instruction

Enlargement and Selection of Display Area

This instruction enlarges a section of the graphics memory by a factor a. The
contents of the graphics memory is not changed but each dot is repeated a times in
the horizontal and vertical directions. The instruction is used to enlarge sections of
the screen or to select the visible section of the graphics memory.

[n] Z00M a

n: linenumber, also including label
a: factor between 0 and 15

The starting point for magnification is specified by the position of the graphic
cursor. Enlargement is then made in the positive x direction and the negative y
direction. The graphic cursor is then located at the top left corner of the screen
following the instruction.

The cursor must be set to the original position in order to reduce to the original
coordinates with ZOOM 0.

Adding graphics during enlargement is not allowed. The ZOOM command serves
for a blow-up view of constructed graphics displays.

ZOOM only changes the visible section of the graphics memory; the coordinate
system determined by VIEWPORT and WINDOW is not changed. Thus, it is possibie
to draw outside the visible section. By setting the cursor to the top left corner of
this area (outside the visible area) and subsequently using ZOOM 0, this area is
made visible.

The graphics memory includes a total of 1638 lines (dots in the vertical direction),

but only 480 are just visible on the screen.

The color graphics option (PCA-B3) permits only ZOOM 0 to be used.

WINDOW, VIEWPORT

3 BASIC Error Messages

Error message

ERROR 1:

ERROR 2:

ERROR 3:

ERROR 4:

ERROR 5:

ERROR 6:

ERROR7:

ERROR 8:

ERROR 9:

ERROR 10:
ERROR 11:
ERROR 12:

ERROR 13:

ERROR 14:

ERROR 15:

ERROR 16:

376.1452.00

"hardware not installed”
"COM:DSR not active”
"COM: timeout”

"COM: overrun”

"COM: parity”

"COM: framing”
"device not open”

"device driver not installed”

"subr. not loaded”

"IEC-bus timeout”
"IEC-bus handshake error”
"not an IEC-bus talker/listener”

"notan IEC-bus controller”
"I/Q-control param. out of range”
"I/Q-control syntax”

"device: general failure”

Type of fault
The interface addressed by the software is not
fitted.

The external V24 device is not ready or not
connected to the PCA.

Timeout for handshake or data transfer on V24
interface.

The input buffer of the V24 interface contains more
than 512 characters.

Error in test bit in data read by V24 interface.

Stop bit has not been received with data input to
V24 interface.

An attempt has been made to read or write from an
interface which has not been opened with 'open’.

The device driver of the operating system accessed
by the incorrectly terminated instruction has not
been loaded in CONFIG.SYS.

A subroutine number has been output with CALL#
which has not yet been loaded.

IEC-bus waiting time exceeded.
Error in IEC-bus handshake with NDAC and NRFD.
BASIC is not in the |[EC-bus talker/listener status.

BASIC is not in the IEC-bus controller status and
must therefore not execute the instruction.

The string contains parameters outside the
permissible range.

String for setting the input/output interface is
faulty.

Interface for input/output indicates an error.

3.1 E-2

ERROR 17:

ERROR 18:

ERROR 19:

ERROR 20:

ERROR 21:

ERROR 22:

ERROR 23:
ERROR 24:
ERROR 25:

ERROR 26:

ERROR 27:
ERROR 28:

ERROR 29:

ERROR 30:

ERROR 31:

ERROR 32:

ERROR 33:
ERROR 34:

ERROR 35:

ERROR 36:
ERROR 37:

ERROR 38:

"device: time out”

"too deeply nested”

"FOR without TO”

"redimensioned array”

"duplicate label”

"incompatible version”

"GOSUB without RETURN”
"line number >65534"
"undefined line or label”

"FOR without matching NEXT"

") and (out of balance”
"undefined command”

"out of memory”

"undefined variable”
"numeric overflow”

"subscript out of range”
”illégal math. operation”
"RETURN without GOSUB”

"syntax error”

"lines nested”
"variable type mismatch”

"undefined operator”

Input/output via the interface is not possible within
the specified period of time.

The maximum permissible number of subroutine
levels has been exceeded.

FOR NEXT loop is not completely defined.
This data field has already been defined.
The marker has already been given away.

E.g. a device driver does not have required version
number.

Subroutine call without return instruction.
The highest line number 65534 has been exceeded.
Branch instruction to a non-existent program line.

The NEXT instruction is missing in matching the FOR
NEXT loop.

Incorrect combination of ()

The entry does not correspond to an existing
instruction.

Permissible memory area violated.

Field variable used has not been previously
dimensioned.

Permissible numerical range of controller has been
exceeded. e.g. when converting into an integer.

Field index outside the permissible range limits.
lllegal mathematical operation
Return from a subroutine not calied by GOSUB.

Faulty instruction; brackets, letters or characters are
wrong.

llilegal RENUMBER or CHAIN statement.
Wrong type of variable used.

Undefined variable within an instruction.

ERROR 39:

ERROR 40:

ERROR41:

ERROR 42:

ERROR 43:
ERROR 44:

ERROR 45:

ERROR 46:
ERROR 47:

ERROR 48:

ERROR 49:

ERROR 50:
. ERRORS1:

ERROR 52:

ERROR 53:

ERROR 54:

ERROR 55:
ERROR 56:

ERROR57:

376.1452.00

"out of data”

"parameter too large”

"line too long”

"illegal quantity”

"can't continue”

"parameter out of range”

"CHAIN line erase”

"Pascal not loaded”
"undefined Function”

"no IF-struc., [ELSE]
ENDIF match”

file already open”

"file not open”
"DOS close error”

"DOS open error”

"DOS write error”

"no valid file number”

"file not open of output”
"file not open for input”

"file name error”

An attempt has been made to read in more data
than are present.

Parameter outside the permissible range.

The permissible number of 80 characters within a
line has been exceeded.

The permissible range of the operation has been
exceeded.

Program cannot be continued with “CONT".

The permissible parameter range has been violated.

The CHAIN line has been overwritten by the
program to be loaded.

PASCAL cannot be loaded.

Function call (FN) without previous DEF FN.

The structure is not complete

An attempt has been made to open a file which is
already open.

An attempt has been made to use an unopened file.
Error when closing a file.

Error when opening a file, e.g. because it does not
exist on this subdirectory.

Error when recording on floppy disk.

The reference number of the file is not within the
permissible range.

The file has not been opened as an output file.
The file has not been opened as an input file.
The permissible length of the file name with 8

letters before the point and 3 letters after it has
been exceeded.

33 E-2

http:376.1452.00

ERROR 58:

ERROR 59:

ERROR 60:
ERRORS61:
ERROR 62:
ERROR 63:
ERROR 64:
ERROR 65:
ERROR 66:
ERROR 67:
ERROR 68:
ERROR 69:
ERROR 70:
ERROR71:
ERROR 72:

ERROR 73:

ERROR 74:

ERROR 75:

ERROR 76:

ERROR77:

ERROR 78:
ERROR 79:

ERROR 80:

"DAC output overflow”
"ADC input overflow”
"WHILE without WEND”
"WEND without WHILE"™
"REPEAT without UNTIL"
"UNTIL without REPEAT™
"DOS write protected disk”
"DOS: unknown unit”
"DOS: drive not ready”

"DOS: unknown command”

‘ ”DOS: data error”

"DOS: bad requests s. length”

"DOS: seek error”

. "DOS: unknown media type”

"DOS: sector not found”

"DOS: printer out of paper” .

"DOS: write fault”
"DOS: read fault”
"DOS: general failure”

"protected file loaded”

"too many GOTO/GOSUBs"
"too many open files”

"function not allowed here”

*) Error messages of the operating system.

A= aara AN

Refers to the ANG interface
Refers to the ANG interface
Structure not complete
Structure not compiete
Structure not complete
Structure not complete

Floppy disk is write protected
*)

No floppy disk inserted in drive
*3

"

"

"

wrong floppy disk format
Defective floppy disk or Winchester

Printer out of paper, not switched on or not
selected. p

"
g
)

the loaded program is not to be listed and cannot
be changed

too much branching (memory overflow)
Opening of further files or interfaces not possible

variable name must not begin with FN (function
call?)

4 Applications

4.1 Program Transfer PUC - PCA

BASIC programs written on the PUC may be used on the PCA provided certain program modifications
are carried out. This is because the BASIC syntax selected for the PCA has a certain uniformity in the
make up of the instructions.

Differentiation is made between the following groups of BASIC instructions:

® Identical instructions

These BASIC instructions, e.g. the main part of the internationally accepted ANSI BASIC, can be run
without modification on the PCA.

® Similarinstructions

This group of instructions either has the same function as in the PUC, but with a different syntax, or
the function of a command with unchanged syntax has been slightly modified as a result of
development and new standards. '

® Fundamentally different instructions

Parts of the program which contain instructions dependent on the hardware or the operating system
must be rewritten for the PCA.

® New instructions on the PCA

They do not affect the program transfer but may increase the execution speed.

4.1.1 Similar Instructions

Those instructions of the P'C and PCA which are similar can easily be replaced by the new syntax on
the PUC using the replace -::ruction (REP).

The following instructions can be converted:

PUC PCA
Printer OPEN1,230 OPENO #1,”LPT1:"
V24 OPEN1,232 OPENO #1,"COM1:~
OPEN | #1,"COM1:"
Floppy Disk Drive OPEN1,1,0 “Name” OPEN | #1,"Name”
OPEN1,1,1 "Name” OPEN O #1,”Name”~
Graphics Kurzform
G.DOT, XY (G.D) DOTX.Y
G.MOVE,X,Y (G.M) MOVE X.Y
G.LINE XY (G.L) DRAW X,Y
G.WIDTH,a (WID,a) WIDTH a
G.INVERT (G.) INVERT
G.WINDOW (G.WIN) WINDOW
G.VIEWPORT (G.V) VIEWPORT
G.PAGE (G.P) CLEAR
G.SET,OFF (GS.0) SETO
G.SET,INVERS (GS,) SET -1
G.SET,ON (G.S.ON) SET -
G.GCOPY (G.G) COPYOUT
IEC Bus IECDEV x no longer required
IEC OFF SRQ ON SRQ RETURN
{ECSRQ GOTOm ON SRQ GOTO m
IECRET SRQ RETURN
IEC TIME x IEC TIME x « 65
o GET INKEY
PRINT s (Home) "E.(0;0H"
Fald I (Clear Home) "E [0
”Q" (Cursor }) "E.[1B”
7e” (Cursor 1) “E [1A"
)" (Cursor —») “E [1C”
1" (Cursor «) "E.[1D”
”R” (Revers) "E [7m”
P (Off Revers) "E.[0Om”

*) Heart graphics

4.1.2 Instructions to be Rewritten

This group includes all the instructions for accessing the floppy disk, since the floppy disk is now
managed by the operating system. The data are filed and selected again using a program name
instead of via the SET instruction. Direct files accessing the sector and byte via hardware are no longer
possible with the PCA. The labelling of graphics must also be rewritten, which are frequently
implemented in the PUC with POKE in the video memories or with cursor movements and PRINT
instructions. The PCA possesses the far more convenient LABEL instruction which enables point-by-
point addressing as well as 16 character sizes and 8 directions of tracing.

Examples of instructions which must be rewritten:

OPEN#T, 200...203,a

SET

G.TAKE (G.T.)

G.COPY (G.C)

PRINT {Cursor movement)

This group also contains machine instructions, machine programs and BASIC instructions such as PEEK
and POKE which use the hardware. Machine programs and programs containing machine routines
‘must therefore be rewritten on the PCA using the assembier of the operating system and matched to
the modified hardware addresses and components.

Machine subroutines are mainly required in the PUC for time-critical parts of the programs, e.g.
adjustment procedures. Since the PCA has a higher computing speed as well as new BASIC
instructions, it should be examined if the programming problem may be solved using BASIC rather
than resorting to a subroutine in machine language.

Examples of machine instructions which cannot be executed on the PCA:

POKE
PEEK
SYS
USR

4.1.3 Transfer of the Program from PUC to PCA

A program which is run on the PUC is transferred to the PCA using the following steps:

® First, all similar instructions are changed on the PUC into the PCA syntax using REP.

® All parts of the program which contain instructions, that cannot be converted are then written on
the PUC. The program must be sufficiently free from errors so that the PCA does not detect any
syntax errors during loading. Lines containing syntax errors are not transferred to the BASIC

program on the PCA.

® The actual transfer takes place from a PUC, model 10 via the IEC bus. To this end, both devices
must be connected via an |EC-bus cable. MS-DOS and BASIC as well as the program YFER.BAS
contained in the subdirectory \USER on the system floppy disk are first loaded into the PCA.

Following the start, the PCA waits for a name to be entered under which the transferred program
is to be filed on the floppy disk as an ASCII file. Following input of the name, the PCA waits to be

addressed as a listener.
The following instruction is then entered on the PUC, model 10:

IECTIME100: IECLISTI,

if everything is carried out correctly, the program will then be listed on the PCA screen.

® The program is simultaneously filed on the floppy disk as an ASCII file. It can be loaded into the
PCA as an executable BASIC program after entering NEW with

ALOAD "NAME .ASC"
NAME is the program name specified above. If errors were present in the program, the error beep
sounds with each error and the error message appears in the status line. It is recommendable to
reedit on the PUC and to repeat the procedure if many errors occurred.

® The PCA signals READY if no errors have been detected during ALOAD. The program now

contains no more syntax errors. This, however, does not mean that it is error-free. It is now
possible to further test and edit the program on the PCA.

4.1.4 Further Instructions
The following differences are, in addition, to be found in the PCA:

® PRINT, (PRINT comma) is not permissible
® Fields with less than 10 parameters must be dimensioned

® Afield variable must not be used as index for fields.

4.2 Matrix Module MATRIX.BAS

The BASIC program module MATRIX.BAS is a complex software routine contained in the USER on the
PCA system floppy and is used to

® determine the result vector of an n-dimensional system of equations

® calculate the inverse values of a quadratic n-dimensional matrix

® multiply two (n*m)-dimensional and (m*1)-dimensional matrices

® divide two (m*n)/(m*m) quadratic n-dimensional matrices

The individual operations can be selected using the module sector X { = 1,2,3,4) where the entry point
is always 51000.

Example: Matrix inversion

X=2:G0SUB 51000

The basic software "MATRIX.BAS" is supplemented on the system floppy by a demo program which
clarifies the input parameters required for each individual operation.

it should be noted that the R&S BASIC predefines the dimensioning of each vector and field used.

In the case of muiti-dimensioning, all variables must therefore be first deleted, if necessary, using the
instruction CLR (see e.g. line 76).

4.2.1 Gaussian Algorithm: X =1

This algorithm solves an n-dimensional system of equations in the form
[A] * X] = B] Evaluation (1)

for the unknown n-dimensional vector X].

input parameters:

N1 Dimension n of the system of equations

AT1(N1,N1) Matrix [A] according to equation (1)

A1(NI, N1 +1) Vector B] according to equation (1)

IT Numerically dependent iteration limit depending on the digit accuracy of the

computer used IT = 5E-14 for the PCAS

Output parameters:

X1(N1) Required vector X] according to equation (1)
ERS$ “linear dependancy” ;

Error message with linearly dependent system of equations
ER=1 Error flag for further evaluation

Module-internal variables:

K1, U1,11,)1
Exampie:
2 -1 2 X 9
34 2|6 X | = 28
12 3 X3 7
Solution:
X, 2
X] = X, = 3

422 Matrix Inversion: X =2

With X = 2, any quadratic n-dimensional matrix [A] can be inverted according to the relationship in
equation (2)

(B] = [A]

[A]l*[B] = [B] *[A] = [E] Evaluation (2)

The input matrix [A] is not changed in the process.

The algorithm used requires an auxiliary matrix [A1] and the auxiliary vector X1] which must also be

dimensioned.

Input parameters:

N1 Dimension n of matrix [A] according to equation (2)
A2(N1,N1) Matrix [A] according to equation (2)

AI(N1 +1,N1+1) Auxiliary matrix [A1]

X1(N1 +1) Auxiliary vector X1]

IT Iteration limit (see Gaussian algorithm)

Output parameters:

A3(N1,N1) Inverted matrix [B] according to equation (2)
ER$ Singular matrix Error message if determinant [B] = 0
ER=2 Error flag for further evaluation

Module-internal variables:

K2, 11,11, K1, Ut

Example:

- [

4.2.3 Matrix Multiplication: X=3

Using this routine, any two matrices with the dimensions (n*m) and (m*e) are multiplied together.

The input matrices [A] and [B] are not changed in the process.
The calculation is as follows:

[C] = [A] * [B] Equation (3)

If[A]is an (n*m) matrix and [B] an (m*e) matrix, the resulting matrix [C] has the dimension (n*e).

The number of columns and lines in the matrices [A] and [B] must be identical (see error flag ER).

Input parameters:

21 Number of lines in matrix [A] according to equation (3)

S1 Number of columns in matrix [A] according to equation (3)

Z2 Number of lines in matrix [B] according to equation (3)

52 Number of columns in matrix [B] according to equation (3)
cautionS1=22!

A4(Z1,51) Matrix [A] according to equation (3)

A3(Z2,52) Matrix [B] according to equation (3)

IT Iteration limit (see Gaussian algorithm)

Output parameters:

AB(Z1,52) Resulting matrix [C] according to equation (3)
ERS "non fitting matrix dimensions "

Error message ifS1<>22
ER=3 Error flag for further evaluation

Module-internal variables:

11, K1, 11

Example:

Solution:

6 -7 -7 1 6
-10 25 15 5 10
-16 -20 -19 -2 16

4.2.4 Matrix Division: X=4

The matrix division is based on the multiplication of an inverted matrix according to equation (4).

[C] = [A)[B] = [A]*[B] Equation (4)

Itis therefore only possible to divide a quadratic matrix [B] which has the dimension n of the number
of columns in matrix [A].

The algorithm internally requires the auxiliary matrix [A1] and the auxiliary vector X1] which must
also be dimensioned.

Input parameters:

21 Number of lines of matrix [A]

S1 Number of columns of matrix [A]

N1 Dimension of matrix [B] according to equation (4)
Caution: N1 =51 (see error flag)

A4(Z1,51) Matrix [A] according to equation (4)

A2(N1,N1) Matrix [B] according to equation (4)

A1(N1+1,N1+1) Auxiliary matrix [A1] :

X1(N1+1) Auxiliary vector X1]

IT Iteration limit (see Gaussian algorithm)

Output parameters:

AB(1,N1) Resulting matrix [C] according to equation (4)
ER$ “singular matrix”
Error message if determinant [B] = 0
ER=2 Error flag for further evaluation
ER$ “non fitting matrix dimensions”
Error message if S1< >N1
ER=4 Error flag for further evaluation.

Module-internal variable:

K2,11,K1,J1, U1
Example:

2 3 3 15 05
4 £ a s| = |05 05

6 0515

4.3 Graphic Examples "GPH-PCA.BAS" or "GPH.ASC"

The universal BASIC graphic module "GPH-PCA.BAS” is suitable for many representations of
measured results in linear or logarithmic scales. It is particularly convenient and easy due to the
plotting routine for the measured values, which saves the user the need to study the PCA graphics
command set and the address calculation that proves rather complicated in the case of logarithmic
representations.

How is the subroutine "GPH-PCA.BAS” operated? The routine ‘GOSUB 2500' or ‘GOSUB Graf_init'
(= building up a graphic representation) requires the following parameters to be entered:

XL = min. value of x-axis;

XH = max. value of x-axis;

YL = min. value of y-axis;

YH = max. value of y-axis;

SX = number of divisions of x-axis;

SsY = number of divisions of y-axis;

LY$ = label y-axis (max. length: 8 characters)

L$ = heading

LX$ = label x-axis

LG = switchlin/log
LG = 0 linear x-axis/linear y-axis
LG = 1 logarithmic x-axis/linear y-axis
LG = 2 linear x-axis/logarithmic y-axis
LG = 3 logarithmic x-axis/logarithmic y-axis

Example 1:

10 LG=1

20 XL=10:XH=1E6

30 YL=10:YH=120

40 LY§="dB"

50 L$="Attenuation/dB"
60 LX$="Frequency/Hz"
65 GOSUB Graf_init

66 END
L LA D
12@
C’B
19 —— —_— e
2 3 2 3 2 3 4 S € S
1E1 Fregquency/H= 1E6

The above mode of representation may be extended as follows:

FM
TL

marker frequency
number of tolerance curves

If TL>0 the number of reference values TS (TL) per tolerance curve and the X/Y values per reference
value must be indicated for each of these tolerance curves.

F(TL, TS(TL)) : x-value
W(TL, TS(TL)) : y-value

The variables TS (TL), G (TL, TS (TL)) and W (TL, TS (TL)) have to be dimensioned before the program is
started.

Exampile 2:

10 DIM TS(2),F(2.4).W(2.4)
20 XL=10:XH=1E5:FM=5000

30 XL=0:YH:120

40 LY$="dB"

50 L$="Tolerance Curves+Marker”

60 LX$="Frequency/Hz"

65 TL=2:TS(1)=4:TS(2)=3«

70 F(1,1)=10:w(1,1)=10:F(1,2)=100:W(1,2)=30

75 F(1.3)=1000:W(1,3)=50:F(1,3)=10000:W(1,4)=70

80 F(2,1)=10:W(2,1)=30:F(2,2)=100:W(2,2)=65:F(2,3)=1000:W(2,3)=65
90 GOSUB Graf_init

95 END

olerance Curves: + Marker

1 ' 1 |
d T
2 9 e 3

]
1E1 %Pequencg/Hz 1ES

~
0
M

The subroutine 'GOSUB 25085' or GOSUB Graf_exe' graphically presents the pair of measured Yalues
(XW, YW) on the screen. It may be presented linearly (LG = 0), logarithmically (LG = 1; xlog/y lin; LG
= 2: xlin/y<log) and double logarithmically.

If more than one measured curve is to be included in a graphic representation the variable GD will

have to be set to '0' (GD

back to the origin.

Example 3:

100
110
120
130
140
150
160
170
180
185
190
200
210
220
230
240
250
260
270

AN B
.

PI=4%ATN(1)

LG=0:TL=0

LY$="Volt":L$="Sett1ing characteristic”:LX$="Time/sec.”
XL=0:XH=2°*PI

YL=-1:YH=1

GOSUB Graf_init

SF=3:6GD=0«

FOR XW=XL TO XH STEP XH/100
YW=EXP(-XW/2):G0SUB Graf_exe

NEXT

SF=2:G6D=0+

FOW Xw=XL TO XH STEP XH/100
YW=-EXP(-XW/2):G0SUB Graf_exe

NEXT

SF=0:6D0=0«

FOR Xw=XL TO XH STEP XH/200
YW=SIN(2*PI*XW)*EXP(-XW/2):GOSUB Graf_exe
NEXT

END

1N - Lnaracteristilics

= 0) before each output of a new curve. Thus, the graphic cursor is brought

-
f—q
—
—_—
_—

mn

[

\—.:----.-.--

..\.f
\

. ;mlﬂ HH ! *.

eewmseamccotesnnsanese.

Time/sec.

6. 28318

For some applications, it is desirable to also indicate the definite numeric vaiue of the measured value
in the graphics.

By means of determining the GPH-PCA variables Py = m, each m-value of y is shown in the graphics.

Example 4:

100 LG=0: SF=0: PY=3

110 XL=0: XH=20:YL=0: YH=400

120 LY$="X"2": LX$="X": L$="Parabel with Y-values™: GOSUB Graf_init
130 FOR XW=XL TO XH: YW=XW"2: GOSUB Graf_exe NEXT

140 END

400

-:;
)

% “P‘ /_
L o
< 3

s

If problems in measuring arise (mostly in the frequency domain) which necessitate a logarithmic
representation, a variable step width will often be required.

By determining the GPH-PCA variables SD = n, the step width SW of the x-axis is automatically
calculated in such a manner that n measurements per decade result.

Example 5:

10
20
30
40
50
60
10
80
85
88
90

LG=1:SD=10«
XL=10:XH=1E6
YL=0:YH=100

LY$S="dB"

L$="Frequency Response”
LX$="Frequenz/Hz"

GOSUB Graf_init
XW=XL:YW=0GD=0:SF=2
XW=YW+2:G0SUB Graf_exe
XW=XW+SW:IF(XW-XH)<OTHEN8S
END

2 -3 2 3
Frequency/H=

P
m
(14}

The representation of the measured curve may finally also be modified by special functions SF = 0 to
9.SF = 0is the normal form of representation.

If SF >0, the measured values are vertically extended by lines in direction of the x-axis. The effect of SF
is shown in the following figure.

See also examples 3 and 5.

Example 6:

1 PI=4°ATN(1)

10 LG=0:SF=7«

20 XL=PI:XH=3°PI

30 YL=-1:YH=+1

40 LY$="dB"

50 L$="Special Functions SF"
60 LX$="Time/msec."”

70 GOSUB Graf_init

75 FOR XW=XL to XH STEP XH/300
76 GOSUB 1000:GOSUB Graf_exe
78 NEXT

85 END

1000 YW=2°SIN(2°PI®XWeEXP(-XW/2))-.9+XW
1010 XW=XW+,008

1020 RETURN

3.14183 . 9. 42477

Color Representations on GPH-PCA

Representations in color are possible by setting the GPH-PCA variables CO = 1 and the corresponding
hardware (PCA2/12 including option -B3 and PMC).

If CO = 1, the following color combinations are used:

color of coordinate system: white
color of label: blue
color of tolerance curves: green
color of marker frequency: red
color of measured curve: yellow

If other color combinations are needed, a broad range of colors may be obtained by setting the
following variables:

CA : = color pen for coordinate system
CL : = color pen for label

CT : = color pen for tolerance curves
CM : = color pen for marker frequency
CC : = color pen for measured curve

The definition of the color pens is effected by means of the COLOR-command. Of course, also the
default color table may be used.

If for instance several measured curves are to be included into a diagram in different colors, it will be
necessary to modify the variable CC before each measured curve (GD = 0!) is drawn.

Output of Graphics on Plotter or Printer

The GRAPHIC instruction of the BASIC Interpreter is a convenient means for activating the plotter as
the medium for output.

Example:
10 GRAPHIC "GRAPH", "DOP"
The following graphic instructions are executed both on the screen and on the Plotter DOP.

The graphic module offers a convenient routine for outputting the produced graphics on PUD2/3.
The following call is required:

GOSUB 25146 or GOSUB Hardcopy

By means of setting the GPH-PCA variabies SP either an immediate output may be selected or an
additional inquiry (printer output yes/no) may be faded in via a menu.

The variable SP is to be defined as follows:

SP = 1 hardcopy without inquiry

SP< >1 hardcopy with previous inquiry

Note:

The above output routines are used by the command “ON ERROR” for detecting a wrongly
connected printer. Other user specific “ON ERROR” routines need to be reactivated following the
selection of this routine.

If a hardcopy with previous inquiry is selected the PCA softkeys will be assigned their meanings by the

graphic module. Following the exit from the routine the standard softkey assignments of the BASIC
interpreter are set.

4.4 BASIC Compatibility of PSA/PAT Controllers
in Comparison with PCA Controllers

Most of .tt_'te tested BASIC programs run on the PSA/PAT without modifications. There are no
compat'lblllty problems as far as the IEC bus is concerned and as far as graphics is concerned only the
ZOOM instruction entails a few problems, such as output of the display on the screen. These problems

are caused by the different graphics hardware and can be avoided by considering the following
items:

1) On the PSA/PAT screen which is compatible to industrial standard either (high resolution)
graphics or alphanumeric characters can be displayed, but not simultaneously and not
superimposed which is possible on the PCA. Deleting the graphics causes deletion of the text and
vice versa.

2) 30 lines can be output on the screen only in VGA mode (SCREEN 17 or 18). in all other modes
(CGA, EGA and HERCULES) only 25 lines can be dispiayed.

3) The graphics memory can store only 1 page (VGA, CGA) or 2 pages (EGA, HERCULES mode) in
contrast to the PCA, which stores up to 3 /3 pages. These pages cannot be continuously scrolled
or zoomed.

For compensating these differences note the following:
Re 1:

After loading BASIC and upon RUN the device is in graphics mode; depending on the graphics
adapter and the monitor connected the VGA, EGA HERCULUS or CGA mode is selected black/white or
colored. The new SCREEN instruction allows for switching to another mode. .
Caution: for the HERCULES mode the support routines must be resident. They are loaded using the
'MS-DOS command HERCSUP.COM. A few graphics multifunction boards must first be initialized for
this mode by the HERCMOD command).

The Escape sequence “Ec[j“ or the SCREEN 3 instruction may be used for switching to the
alphanumeric mode, if the program consists exclusively of alphanumeric outputs. Of course
alphanumeric characters can be output in graphics mode as well using the PRINT instruction but this
mode is a bit slowlier than the alphanumeric mode and attributes are not allowed.

Each graphics instruction in the program automatically switches over to the graphics mode.

The F8 key allows for alternate switching between the aiphanumeric and the graphics mode.
Restrictions: If the bottom of the screen is reached by the alphanumeric output, the graphics is
scrolled. Graphics labellings with PRINT (instead of LABEL) do not correspond to the drawing, since

the graphics coordinate system holds only 21 lines instead of 25 (except for VGA mode).

In all modes the graphics are displayed in the same size, since the VIEWPORT instruction always
assumes a virtual monitor of 640 x 480 pixels like PCA but the resolution is lower than that of the
PCA except for VGA mode 17, 18.

http:HERCSUP.COM

Re 2:

For the alphanumeric display of 25 lines (30 lines are only available in VGA mode which is compatible
to the PCA 30-line mode!) the bottom line (line 25) is used as status and error line, allowing the user
to write to 24 lines. If the status or softkey lines are labelled by the Escape sequences, 4 lines are
reserved (instead of 5 in case of PCA);thus, 21 lines are still available (instead of 25 on the PCA).

Absolute positioning of the cursor below the defined range sets the cursor to the bottom line (line 20
to 23), a following LF scrolls the screen.

Re 3:

- In the EGA and HERCULES modes two pages can be stored. Only in these modes background drawing
is allowed. As soon as the y-coordinate is outside the visible range the second screen page is written
to. MOVE and ZOOM select the visible page. A switch-over is initiated by y-coordinates above or
below the visible screen. Continuous scrolling is not possibie.

The INVERT instruction (invert b/w monitor) is not implemented at present.

The status and softkey lines are labelled according to the following table:

PSA/PAT-controller PCA and PSA
Screen lines CGA, EGA, only VGA graphics
HERC.mode mode
first 0
! 1
l -
|
| 25 Qi
| 21 Q1,Q3 26 Q2.Q
ik 22 Q2,Q4,Softk. 27 Q3
last 23 Q5 28 Q4,softk.
248 Q 29 Q5

The ESC sequences

[a switch-over to 25 lines
[b switch-over to 30 lines

are only relevant for the VGA mode. In the other modes switching over to 21 lines is effected by

pressing a and to 25 lines by pressing b (the space reserved for softkeys and status information is
available again) .

The following attributes are only available in alphanumeric mode:

Sequenz Function 'e:::i;:k"s
(81m display page ! notin HERC.mode
(82m display page 2 notin HERC.mode
(83m write page ! notin HERC.mode
[84m write page 2 notin HERC.mode
(Om reset attributes -

[1m increased intensity

(2m reduced intensity normal intensity

[am underline notin HERC.mode

[5m siow blinking normal blinking

[6m fast blinking normal blinking

[7m reverse display

[9m switch on block graphics -

(91m lowest blue

[92m intensity green

(93m l cobalt biue | !ntensity degrees
! correspond to colors

[94m } red (also in graphics

sim | | vow | rodebbusnorn

{96m il yellow

[97m highest white

[98m intensity white

[:m IBM character set cancelled

[;m PCA character set cancelled

[(>m double character width cancelled

The following sequences have been added:

l switches over from graphics mode to alphanumeric mode
leaves the PCA compatibility mode (keypad codes)
switches over from alphanumeric mode to graphics mode

(1]
(2]

The following BASIC routine checks whether the PSA/PAT hardware is running and if running sets the

IBMFLAG to 1.

100 SEGMENT 79

110 IF PEEK(0) + PEEK(1)=146 THEN IBMFLAG=1
(120 SEGMENT DEF)

ROHDE&SCHWARZ

BASIC-Interpreter
Instruction Set

Version 2

PD 756.8210.24

http:756.8210.24

Definitions of Terms Used

Character
n,m

t

z

k

k%

vn

v

vS

a,b,c,x.y
s$

a’s$
k/t
():=.#

Instructions

Graphics
statements

IEC
statements

Commands

Functions

Synonyms

Default values

Meaning

Line numbers (1 to 65.534)

String of characters

One-digit constant

Numeric constant

Integer constant (-32.768 to 65.535)
Numeric variable

Integer variable

String variable

One of the variables vn, v%, v$
Constant, variable or numeric expression

String expression
(string constant, variable or function)

Numeric expression a or string expression s$
Numeric constant k or string constant t

Characters belonging to the syntax
which must therefore be written

Brackets which enclose a part of the statement.
These are extensions 1o an instruction which are possible
but not absolutely necessary

Specified extensions may be repeated in the statement i

Components of the program; are located im- PRINT
mediately after a line number or a colon. If GOTO
the instruction is written without a line num-

ber, it is executed immediately like command

(direct mode)

Concern single dot graphics.

Concern the IEC-625 bus

Cannot be components of a program since ALOAD
they generally handle programs. Their exe- NEW
cution is always immediate.

Always possess an argument.

Functions with a subsequent $ character al- CHR$(10)
ways produce a character string as the result. MIDS(AS)
(string function) |

Functions without a subsequent $ character SIN(A)
produce a numeric value as the result (nume-
ric function).

Notations of an instruction which are accepted |ECATN
as being compatible but are automatically con- IECATT
verted internally by the controller into the PCA

syntax

Parameters which the PCA uses if no para-
meters are specified in the statement.

Uppercase Mark keywords which must be entered in this Data

letters sequence. The input may be both in upper-

case and lower-case notation. DATA k,[.k,]... Setting up a data sequence
Lowercase Dummy values for characters or character se- DIM v (a,[.a,]...) Field dimensioning
letters quences freely selectable by the user. (The INKEY v$ Keyboard poll

first letter of the examples is written in accor-

dance with German notation). INPUT[“t"; }v, [,vn].. Keyboard input
INPUTS (n,[#a]) String input with number of characters
Variable Any sequence of letters and digits as well as 2o
name underline characters used as a means of dif- READ vy [vn)... Reading in-data characters
ferentiation. The first character must be a let- RESTORE [m] Reset data pointer
ter. Both upper-case and lower-case letters
can be entered; BASIC always converis the
first letter to upper case and the subsequent
to lower case. Al1,A2
Long _name Program execution
Labels Jump targets of the GOTO/GOSUB instruc- ‘ BREAK OFF Disable Break ke
tions, the name establishing the reference. ¥
Labels are located after the line number and BREAK or EXIT Enable Break key
end with “:”. The definition of the variable BYE Switch to the operating system
name given above also applies to labels. 100 Subroutin_no 1: . CLR Set basic status of BASIC
CONT Program continuation
END Program end
Numerical functions and operators ERASE vo[.vi].. Clear variables
HOLD a Waiting time in ms
> greater than REM Remark
pa less than RUN [n] Program start
= equal to or greater than Relational operators SHELL [s5) Call-up of MS-DOS commands
equal to or less than STOP Program stop
> not equal to TRACE Output of line number of running program
= equal to TRACE OFF Switch off TRACE mode
AND TRACEa/sS[.a/sS]... Program execution in steps with output
OR ;
Boolean operations
NOT |
XOR
SGN (a) Sign Pseudo variables
INT (@) Integer DATES Read out date
ABS fa) Absolute value y DATUMS Read out date (German)
SaR () Square root Pl Circle constant
SIN (@) TIME Measure or calculate time
CoS (a) ~ TIMES Read out time
Angular functions
TAN (a)
ATN (a)
LOG (a) Logarithm to base e
EXP (a) Exponent to base e
a f b Power function
RND (a) Random function
ERM (a) Error poll
ERL (a) Poll of error line
FRE (a) Poll of freely available storage space
'FJISF EN 2 Functions definable by the user

Jumps and loops

Edit instructions

iF THEN AUTO [n].[AN] Automatic line numbering

ELSE Structure element (over several lines) DELETE n-m Delete lines

ENDIF DIR [t] Output directory

FORvn=aTODb[STEPc] Loops FRE {0) Avilab

NEXT [vn] FRE (1) vailable memory space

GOSUB n Jump into subroutine HELP[arg] Select and display support information texts
ON a GOSUB n[,m]... Jump depending on a IEC[K]LIST ON a Program output on IEC bus

GOTO n Unconditional jump OFF Termination of program output on IEC bus
ON a GOTO n{[.m] Jump depending on a LIST [n][-{m]] Program output on screen

IF a THEN .. . ELSE Comparison NEW Delete program

ON ERROR GOTO n) Enable jump or subroutine call PLIST {n](-[m]] Program output via printer interface

ON ERROR GOSUB n) in case of error PRINT FRE (0) Available data storage space

ON COMa GOTO n Enable jump or subroutine call upon end-of-file PRINT FRE (1) Available program storage space

ON COMa GOSUB n character in interface RENUMBER

ON KEY GOTO n Enable jump or subroutine call , ImillsfogdIntan) | Remumbering of lings

ON KEY GOSUB n upon keystroke SEARCH [n-m], t Search text lines

ON SRQ GOTO n SOFTKEY Restore softkey labelling

ON SRQ GOSUB n

ON TIME GOTO n

ON TIME GOSUB n

ON TTL v GOTO n

ON TTL v GOSUB n

CALL af,vn,]
RETURN (a] Return from subroutine CALL # a[,vn,]..
REPEAT i Loop structure (over several lines) INP (a)
UNTIL a condition at the end LOAD # a, s$
WHILE a iLoop structure (over several lines) OUT a.b
WEND condition at the beginning PASCAL a[,vm]. ..
PEEK {a)
POKE a, b
SEGMENT a/DEF
Character string processing VARPTR (v}

upon Service Request
Enable jump or subroutine call

at a given time

z Enabie jump or subroutine call
E Enable jump upon TTL interrupt

ASC (s$) Conversion of ASCIl character into numeric value .
BIN(sS) Conversion of binary numbers

BINS(a) and decimal numbers

CHRS(a) Conversion of numeric value into ASCII character
HEX (s$) Conversion of hexadecimal

HEXS(a) and decimal numbers

LEFTS (sS,a) Separate first characters from string

LEN(sS$) Length of a string

MIDs (sS,a, b) Remove middle characters from string

RIGHTS (sS$, a) Separate iast characters from string

STRS (a) Conversion of numeric variable into string

VAL (s$) Conversion of string into numeric variable

+

Linking of character strings

Machine instructions

Machine program call

Call machine routine

Read via 1/0 addresses
Load machine routines
Output via I/0 addresses
Call Pascal routines

Read memory location
Write into memory location
Fix a segment

Read in a variable pointer

http:InJ.[t.nl

Graphics instructions

AREA x .y

CLEAR
COLORf,r,g.b
COPY OUT [a]
DOT x.y

DRAW x y
GLOAD “ss"
GRAPHICs ${,s 5]
GSAVE “ss”
INVERT

LABEL ss [,a[,b[.c]]]

MOVE xy
POLYLINE a,v%(b)
RMOVE x,y
RDRAW x .,y

SET a[,b][.c]

VIEWPORT x1,x2,y1,y2

WIDTH a

WINDOW x1,x2,y1,y2

ZO00M a

Draw filled in rectangle

Clear graphics display

Color assignment

Output graphics to printer
Draw dot

Draw line

Load graphics display from file
Select graphics interface

Store graphics display on file
Invert graphics display
Labelling of graphics

Position cursor

Draw polyline

Position cursor relative

Draw line relative

Display mode for lines and dots
Fixing display area of screen
Draw broken lines

Fixing coordinate range
Enlargement and selection of display area

Input/output via floppy disk, hard disk

and interface

ALOAD"t”
ASAVE""

CHAIN ss, m
CLOSE # [a][,a]...
FORM [m-n]
INPUT s (c[. # a])

INPUT #a., v,[.v,]. .

LOAD s $[,R]
OPENl #a,s$
OPENO #a,s s
OPENI # a,”"CON:"

OPENI #a, "COMb:
B,PASTECH"

OPENO # a,"LPT1:"
PLAY s$[, a]

PRINT # a, a/s$
PRINT list[;] or [,]
PRINT USINGsS , list
SAVEsS$

TAB (a)

Load program stored in ASCIi code
Save program in ASCIl code
Reload program sections

Close file

Set page format of printer

Read in string via keyboard or interface
Load file

Load program

Open input file

Open output file

Input/output on console

Input/output on V24/RS 232
Output on printer

Signal tone with pitch and duration in s $
and repetition rate a

Store data

Character output on screen
Formarted output on screen
Store program

Distance from left edge of screen

A/D Converter

ADCaBLOCKIN "A, Measure block with channel number
counter, channels, and sampling rate;

sample _rate start measurement with digital trigger
[.Ttrigger])”,v%(b)

ADCaBLOCKIN "A, Measure block with adjustable sampling

counter, channel, rate; start measurement with
sample _rate analog trigger
[Strigger]”,v%/(b)

ADCalN“A,channel",v Measure a channel value
ADCaIlN"D",v
ADCaOUT"D"v

Read in the four digital input lines
Output to the four digital output lines

Analog 1/0 Interface

ANGa BLOCKIN
“counter [, samplrate] ',

Measure block with selectable sample rate

v%(b)
ANGa BLOCKOUT Output block of values to D/A converter
“counter, repetitions, with selectable output rate

output_rate”, v % (b)
ANGa IN "U,m,b,g",v Measure voltage with analog interface
ANGa IN "I, m,b,g".v Measure current with analog interface

ANGa IN “R,b,g",v

ANGa IN "CALx", A

ANGa OUT “D" A

Measure resistance with analog interface

Correct offset of voltage resistance measuring
path of analog interface option

Output analog value with digital/analog converter
of analog interface option

Relay Interface

RELnOUT"R",
bitpattern

Switch one or several relays according
to variable bit pattern

REL nOUT RelNumber $, Set relay RelNumber $ to switched state

state (n: interface number 1 10 4)
TTL-1/0-Interface

TTL a IN

"port 1 [port 2]”, V1 Reading-in via ports A to E
TTL a OUT

"port 1 [port 2]",b Output via ports A 1o E
TTLaIN “F". b Reading-in via port F

TTL a OUT “F".b
TTL a IN "HSK", V1

TTL a OUT "HSK", 0

TTL a OUT "HSK", 1
TTL a OUT “INT"
TTL a IN “INT", V1

TTL a IN “port bit”, V1
TTL a OUT “port bit".b

TTL a OUT “2.5Vv”

Output via port F

Checking the handshake status
Initialize input for handshake

Initialize output for handshake

Interrupt with TTL 170 interface
Detection of interrupt line

Reading-in of single bits via ports A to E
Output of single bits via ports A 10 E
Setting the internal voliage source

Universal Control Interface

UClalIN

“port 1 [port 2],V 1
UClaOUT

“port 1 [port 2], V1
UCla OUT “INT”
UClaiN"INT", V1

UClalIN “port bit",V 1
UCIaOUT “port bit", V1

UClaOuUT “2.5Vv"

Pol!l port groups A to E

Set port groups A to E

Interrupt with TTL 1/0 interface
Determine line causing interrupt
Read in single bits

Set single bits for port groups A to E
Set internal voltage source

IEC-bus instructions

Universal instructions

IEC ATN
JEC NATN
IEC DCL
IEC EOI

IEC NEOI
IEC IFC

IEC LLO
IEC PPD
IEC PPE k; k,
IEC PPL v%
IEC PPU
IEC RLC
IEC RQS
IEC REN
IEC NREN
IEC SPD
IEC SPE

IEC TERM a
IEC TIME a
IEC T1

IEC UNL

ON SRQ GOSUB m
ON SRQ GOTO n
ON SRQ RETURN

ATN line active

ATN line passive

Device clear

Output terminator with EOI
Output terminator without EOl
Transmit IFC

Local Lockout

Parallel poll disable

Parallel poll enable

Parallel poll

Parallel poll unconfigure
Release control

Send service request

REN line active

REN line passive

Serial poll disable

Serial poll enable

Define input terminator
Set time-out monitor

Set time T1

Unaddress the devices as listeners

%Jump on SRQ

Inhibit jump upon SRQ

Addressed instructions

IEC ADR a
IEC GET

IEC GTL

IEC IN a,,[; a,],v$
IEC $IN v$

IEC %IN v%

JEC LAD a

IEC LIST ON

IEC LIST OFF

IEC MTA (IECUNT)
IEC OUTa, [;a,].55(:]
IEC SOUT s$

IEC %OUT a%

IEC PCON bk, ;k,
IEC PPC

IEC SAD a

IEC SDC

IEC SPL b, [;b:]ov%
IEC TAD a

IEC TCT

IEC UNL

IEC WMLA

IEC WMTA

JEC WTC

Assign address

Group execute trigger

Go to local

Read in data

Enter character string without address
Enter character without address
Transmit listener address

Switch on parallel output on IEC bus
Switch off parallel output on IEC bus
Transmit untalk

Transmit character string

Output character string without address
Output individual character

Parallel poll configure

Parallel poll configure

Transmit secondary address
Selected device clear

Serial poll

Transmit talker address

Take control

Transmit unlisten

Wait for listener address

Wait for talker address

Wait for takeover of control

Error messages

Error message:

Type of fault:

ERROR 1: “hardware not installed” Interface addressed by the software

ERROR 2: “COM: DSR not active”

ERROR 3: “COM: timeout”

ERROR 4: “COM: overrun”

ERROR 5: "COM: parity”

ERROR 6: "COM: framing”

ERROR 7: “d

ERROR 8:

evice not open”

“device driver not installed”

ERROR 9: "subroutine not loaded”

ERROR 10: ~
ERROR 11:

IEC-bus timeout”

"IEC-bus handshake error”

ERROR 12:

“not an |IEC-bus talker/listener”

ERROR 13:

“not an {EC-bus controller”

ERROR 14:
“1/0-control

ERROR 15:

ERROR 16:

param. out of range”

170-control syntax”

“device: general failure”

ERROR 17:

ERROR 18:

ERROR 19:
ERROR 20: ~
ERROR 21:

device: time out”

too deeply nested”

“FOR without TO"

redimensioned array”

“duplicate label”

is not fitted.

External V 24 device is not ready
or not connected to the PCA.

Timeout for handshake or data reception
on V24 interface.

Input buffer of the V 24 interface
contains more than 512 characters.

Error in test bit in data read by V 24
interface.

Stop bit has not been received with data
input to V 24 interface.

An attempt has been made to read from
or write to an interface which has not been
opened with OPEN

Device driver of the operating system
accessed by the incorrectly terminated
instruction has not been loaded in
CONFIG. SYS.

A subroutine number has been output with
CALL # which has not yet been loaded.

IEC-bus waiting time exceeded.

Error in IEC-bus handshake on NDAC
and NRFD

BASIC is not in the IEC-bus talker/listener
status

BASIC is not in the IEC-bus controller status
and must therefore not execute the
instruction

String contains out-of-range values

String for setting the input/output interface
is faulty.

Interface for input/output signals
a failure.

Input/output via the interface is not
possible within the given period of time.

Maximum permissible number of
subroutine levels has been exceeded.

FOR NEXT loop is not completely defined.
This data field has already been defined.

Label has been used twice

ERROR 22: “incompatible version”

ERROR 23:
“GOSUB without RETURN"

ERROR 24: “line number > 65534~

ERROR 25:
“undefined line or label”

ERROR 26:
“FOR without matching NEXT"

ERROR 27
“yand (out of balance”

ERROR 28: “undefined command”

ERROR 29: “out of memory”

ERROR 30: "undefined variable”

ERROR 31: “numeric overflow”

ERROR 32
“subscript out of range”

ERROR 33
“illegal math. operation”

ERROR 34:
“RETURN without GOSUB”

ERROR 35: “syntax error”

ERROR 36: “lines nested”

ERROR 37:
“variable type mismatch”

ERROR 38: “undefined operator”

ERROR 39: “out of data”

ERROR 40: “parameter too large”
ERROR 41: “line too long”

ERROR 42: “illegal quantity”

ERROR 43: “can’t continue”

ERROR 44:
“parameter out of range”

e. g. is not compatible with this BASIC
version

Subroutine call without return instruction.

The highest line number 65534 has been
exceeded.

Branch instruction to a non-existent
program line.

The NEXT instruction is missing in the
FOR NEXT loop.

Incorrect combination of ()

The entry does not correspond to an
existing instruction.

Permissible memory area violated,

Variable used has not been previously
dimensioned.

Permissible number range of controller
has been exceeded, e. g. when converting
into an integer.

Field index outside the permissible range
limits

lllegal mathematical operation

Return from a subroutine not called by
GOSuUB.

Faulty instruction; brackets, letters or
characters are wrong.

llegal RENUMBER or CHAIN statement.

Wrong type of variable used.

Undefined variable within an instruction

An attempt has been made to read in more
data than are present.

Parameter outside the permissible range.

The permissible number of 80 characters
within a line has been exceeded.

Permissible number range of the operation
has been exceeded.

Program cannot be continued with “CONT".

Permissible parameter range has been
violated

ERROR 45: “CHAIN line erase”

ERROR 46: “Pascal not loaded”
ERROR 47: “undef'd function”

ERROR 48:

“no IF-struc., [ELSE], ENDIF match”

ERROR 49: “file already open”

ERROR 50: “file not open”

ERROR 51: “DOS close error”
ERROR 52: "DOS open error”

ERROR 53: “DOS write error”
ERROR 54: “no valid file number”

ERROR 55
“file not open for output”

ERROR 56:
“file not open for input”

ERROR 57: “file name error”

ERROR 58: “DAC output overflow”
ERROR 59: “ADC input overflow”

ERROR 60:
“WHILE without WEND"

ERROR 61:
“WEND without WHILE"

ERROR 62:
“REPEAT without UNTIL”

ERROR 63:
“UNTIL without REPEAT”

ERRCR 64
“DOS: write protected disk”

ERROR 65: "DOS: unknown unit”

ERROR 66: “DOS: drive not ready”

ERROR 67:
“DOS: unknown command”

ERROR 68: “DOS: data error”

CHAIN line has been overwritten by
the program to be loaded.

Pascal cannot be loaded.
Function call (FN) without previous DEF FN.

Structure is not complete.

An attempt has been made to open a file
which is already open

An attempt has been made to use an
unopened file.

Error when closing a file.

Error when opening a file, e. g. because
it does not exist on this subdirectory.

Error when recording on floppy disk.

Reference number of the file is not
within the permissible range.

File has not been opened as an
output file.

File has not been opened as an
input file.

Permissible length of the filename

with 8 letters before the point

and 3 letters after it has been exceeded.
Refers to ANG interface.

Refers to ANG interface.

Structure is not complete

Structure is not complete

Structure is not complete

Structure is not complete.

Floppy disk is write protected.

*)
No floppy disk inserted in the drive.
f
)
"

ERROR 69:
“DOS: bad request s. length”

ERROR 70: "DOS: seek error”

°)
)

ERROR 71: CoNTAOL N”"B;Rs UPPER CASE LOWER CASE
“DOS: unknown media type” Wrong floppy disk format. AAMAOLS
T
ERROR 72: o |not 16 |DLE | KR L R o @ w|p | |2 o |
“DOS: sector not found” Defective floppy disk or Winchester, i) som (Gt |17 |oet o R R R Aler | a]or| a]m|a
’ITZRROR 73: ' Printer out of paper, not switched on I 5K 8 pc2 [u |« |so | 2 |6 B & =R b | 1al ¢
DOS: printer out of paper” or not selected. | g | (PO 1 s u E L]
. 2 1@ 'DC3 3 # (1 3 &7 c 8 s =] c " s
ERROR 74: “DOS: write fault” % [R) il Ny I i) I |
O pca oo | 38 s a [D 84 Y |lwo| da | 6] 1
ERROR 75: “DOS: read fault”) il 2500 o ==k 1 ==l B a4 B 4
L . ENQ FPPC | 21 NAK PP a7 % 3 5 [E as u " . n7z u
ERROR 76: “DOS: general failure” *) e e | 1 _ 5 = £ + e
X ACK 22 SYN K.} & w4 6 F ar v] 18 v
ERROR 77: The loaded program is not to be listed E | == 3 3 ~+—+— J + -
“protected file loaded"” and cannot be changed BEL 23 |ETB 30 7 i | o w |0 a |19 w
ERROR 78: | Bs GET |22 CAN SPE | a0 | (8 |72 n |a x |wa| n | x
“too many GOTO/GOSUBs" Too much branching (memory overflow) L T 3 i 5 S 3
il HY |TCT (:‘ . EM | SPD 4t) 4 9 7 I 3 Y i 21 ¥
ERROR 79: Opening of further files or interfaces L + —1 ¥ — T 1 i
“too many open files” not possible LF 26 |suB 4 S O R R L z
ERROR 80: Variable name must not begin with FN vr 27 lesc O B B L B R ko o
“function not allowed here” (function calll) T i 5l = i T |
FF a | Fs a3 < |7 L] \ 1] ves |
CR 24 GS -‘ 4 — 1 M i 1 i om 1)
*) Error messages of the operating system. W 89 0. | B8 ® > i ! " =
- L. 1| S SR - L 4 -
s 31 | us av | / 3 ’u“ w0 3 - o 7 DEL
4 !
ADDRESSED UNIVERSAL LISTEN TALK i%%%’;g:g;’
AN SE ADDRESSES
COMMANDS I COMMANDS ADDRESSES OR COMMANDS

ASCI1/1SO- & IEC-CODE CHART

Interface message

ASCII character

= Decimal

