Design Group Index

<table>
<thead>
<tr>
<th>Model</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC 2–1M</td>
<td>0–2</td>
<td>0–1</td>
</tr>
<tr>
<td>ABC 7.5–2M</td>
<td>0–7.5</td>
<td>0–2</td>
</tr>
<tr>
<td>ABC 10–0.75M</td>
<td>0–10</td>
<td>0–0.75</td>
</tr>
<tr>
<td>ABC 15–1M</td>
<td>0–15</td>
<td>0–1</td>
</tr>
<tr>
<td>ABC 18–0.5M</td>
<td>0–18</td>
<td>0–0.5</td>
</tr>
<tr>
<td>ABC 30–0.3M</td>
<td>0–30</td>
<td>0–0.3</td>
</tr>
<tr>
<td>ABC 40–0.5M</td>
<td>0–40</td>
<td>0–0.5</td>
</tr>
<tr>
<td>ABC 200M</td>
<td>0–200</td>
<td>0–0.1</td>
</tr>
<tr>
<td>ABC 425M</td>
<td>0–425</td>
<td>0–0.05</td>
</tr>
<tr>
<td>ABC 700M</td>
<td>0–1000</td>
<td>0–0.02</td>
</tr>
<tr>
<td>ABC 1500M</td>
<td>0–1500</td>
<td>0–0.01</td>
</tr>
<tr>
<td>ABC 2500M</td>
<td>0–2500</td>
<td>0–0.002</td>
</tr>
<tr>
<td>CK 2–8M</td>
<td>0–2</td>
<td>0–8</td>
</tr>
<tr>
<td>CK 8–5M</td>
<td>0–8</td>
<td>0–5</td>
</tr>
<tr>
<td>CK 18–3M</td>
<td>0–18</td>
<td>0–3</td>
</tr>
<tr>
<td>CK 36–1.5M</td>
<td>0–36</td>
<td>0–1.5</td>
</tr>
<tr>
<td>CK 40–0.8M</td>
<td>0–40</td>
<td>0–0.8</td>
</tr>
<tr>
<td>CK 60–0.5M</td>
<td>0–60</td>
<td>0–0.5</td>
</tr>
<tr>
<td>HB 2AM</td>
<td>0–325</td>
<td>0–0.2</td>
</tr>
<tr>
<td>HB 4AM</td>
<td>0–325</td>
<td>0–0.4</td>
</tr>
<tr>
<td>HB 8AM</td>
<td>0–325</td>
<td>0–0.6</td>
</tr>
<tr>
<td>HB 12M</td>
<td>0–225</td>
<td>0–1</td>
</tr>
<tr>
<td>HB 25M</td>
<td>0–525</td>
<td>0–0.5</td>
</tr>
<tr>
<td>KO 12–100M</td>
<td>0–12</td>
<td>0–100</td>
</tr>
<tr>
<td>KO 25–50M</td>
<td>0–25</td>
<td>0–50</td>
</tr>
<tr>
<td>KO 45–30M</td>
<td>0–45</td>
<td>0–30</td>
</tr>
<tr>
<td>KO 70–20M</td>
<td>0–70</td>
<td>0–20</td>
</tr>
<tr>
<td>KR 11M</td>
<td>0–150</td>
<td>0–0.125</td>
</tr>
<tr>
<td>KR 1M</td>
<td>100–200</td>
<td>0–0.125</td>
</tr>
<tr>
<td>KR 2M</td>
<td>195–325</td>
<td>0–0.125</td>
</tr>
<tr>
<td>KR 8M</td>
<td>295–450</td>
<td>0–0.125</td>
</tr>
<tr>
<td>KR 12M</td>
<td>0–150</td>
<td>0–0.3</td>
</tr>
<tr>
<td>KR 18M</td>
<td>100–200</td>
<td>0–0.3</td>
</tr>
<tr>
<td>KR 3M</td>
<td>195–325</td>
<td>0–0.3</td>
</tr>
<tr>
<td>KR 10M</td>
<td>295–450</td>
<td>0–0.3</td>
</tr>
<tr>
<td>KR 8M</td>
<td>0–150</td>
<td>0–0.6</td>
</tr>
<tr>
<td>KR 1M</td>
<td>100–200</td>
<td>0–0.6</td>
</tr>
<tr>
<td>KR 6M</td>
<td>195–325</td>
<td>0–0.6</td>
</tr>
<tr>
<td>KR 7M</td>
<td>295–450</td>
<td>0–0.6</td>
</tr>
</tbody>
</table>

Index by Output Voltage

<table>
<thead>
<tr>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
<th>Model</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2</td>
<td>0–1</td>
<td>ABC 2–1M</td>
<td>16–17</td>
</tr>
<tr>
<td>0–2</td>
<td>0–8</td>
<td>CK 2–8M</td>
<td>20–21</td>
</tr>
<tr>
<td>6.3</td>
<td>0–25</td>
<td>PRM 6–25</td>
<td>34–35</td>
</tr>
<tr>
<td>0–7</td>
<td>0–1</td>
<td>PAX 7–1</td>
<td>30–31</td>
</tr>
<tr>
<td>0–7.5</td>
<td>0–2</td>
<td>ABC 7.5–2M</td>
<td>16–17</td>
</tr>
<tr>
<td>0–8</td>
<td>0–5</td>
<td>CK 8–5M</td>
<td>20–21</td>
</tr>
<tr>
<td>0–8</td>
<td>0–15</td>
<td>KS 8–15M</td>
<td>28–29</td>
</tr>
<tr>
<td>0–8</td>
<td>0–25</td>
<td>KS 8–25M</td>
<td>28–29</td>
</tr>
<tr>
<td>0–8</td>
<td>0–50</td>
<td>KS 8–50M</td>
<td>28–29</td>
</tr>
<tr>
<td>0–8</td>
<td>0–100</td>
<td>KS 8–100M</td>
<td>28–29</td>
</tr>
<tr>
<td>0–10</td>
<td>0–0.75</td>
<td>ABC 10–0.75M</td>
<td>16–17</td>
</tr>
<tr>
<td>0–12</td>
<td>0–100</td>
<td>KO 12–100M</td>
<td>24–25</td>
</tr>
<tr>
<td>12</td>
<td>0–15</td>
<td>PRM 12–15</td>
<td>34–35</td>
</tr>
<tr>
<td>0–14</td>
<td>0–0.75</td>
<td>PAX 14–0.75</td>
<td>30–31</td>
</tr>
<tr>
<td>0–14</td>
<td>0–7</td>
<td>SM 14–7M</td>
<td>38–39</td>
</tr>
<tr>
<td>0–14</td>
<td>0–15</td>
<td>SM 14–15M</td>
<td>38–39</td>
</tr>
<tr>
<td>0–14</td>
<td>0–30</td>
<td>SM 14–30M</td>
<td>38–39</td>
</tr>
<tr>
<td>0–15</td>
<td>0–1</td>
<td>ABC 15–1M</td>
<td>16–17</td>
</tr>
<tr>
<td>0–7.5–15</td>
<td>0–10</td>
<td>PR 15–10M</td>
<td>32–33</td>
</tr>
<tr>
<td>0–15</td>
<td>0–30</td>
<td>PR 15–30M</td>
<td>32–33</td>
</tr>
<tr>
<td>0–18</td>
<td>0–0.5</td>
<td>ABC 18–0.5M</td>
<td>16–17</td>
</tr>
<tr>
<td>0–18</td>
<td>0–1</td>
<td>SC 18–1M</td>
<td>36–37</td>
</tr>
<tr>
<td>0–18</td>
<td>0–2</td>
<td>SC 18–2M</td>
<td>36–37</td>
</tr>
<tr>
<td>0–18</td>
<td>0–3</td>
<td>CK 18–3M</td>
<td>20–21</td>
</tr>
<tr>
<td>0–18</td>
<td>0–4</td>
<td>SC 18–4M</td>
<td>36–37</td>
</tr>
<tr>
<td>0–18</td>
<td>0–10</td>
<td>KS 18–10M</td>
<td>28–29</td>
</tr>
<tr>
<td>0–18</td>
<td>0–15</td>
<td>KS 18–15M</td>
<td>28–29</td>
</tr>
<tr>
<td>0–18</td>
<td>0–25</td>
<td>KS 18–25M</td>
<td>28–29</td>
</tr>
<tr>
<td>0–18</td>
<td>0–50</td>
<td>KS 18–50M</td>
<td>28–29</td>
</tr>
<tr>
<td>18</td>
<td>0–10</td>
<td>PRM 19–10</td>
<td>34–35</td>
</tr>
<tr>
<td>0–20</td>
<td>0–100</td>
<td>PR 20–100AM</td>
<td>32–33</td>
</tr>
<tr>
<td>0–21</td>
<td>0–0.5</td>
<td>PAX 21–0.5</td>
<td>30–31</td>
</tr>
<tr>
<td>24</td>
<td>0–8</td>
<td>PRM 24–8</td>
<td>34–35</td>
</tr>
<tr>
<td>0–25</td>
<td>0–50</td>
<td>KO 25–50M</td>
<td>24–25</td>
</tr>
<tr>
<td>28</td>
<td>0–7</td>
<td>PRM 28–7</td>
<td>34–35</td>
</tr>
<tr>
<td>0–30</td>
<td>0–0.3</td>
<td>ABC 30–0.3M</td>
<td>16–17</td>
</tr>
<tr>
<td>MODEL</td>
<td>DC OUTPUT VOLTS</td>
<td>DC OUTPUT AMPs</td>
<td>MODEL</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>KS 8-15M</td>
<td>0-8</td>
<td>0-15</td>
<td>2SC 32-1.5</td>
</tr>
<tr>
<td>KS 8-25M</td>
<td>0-8</td>
<td>0-25</td>
<td>0-32</td>
</tr>
<tr>
<td>KS 8-50M</td>
<td>0-8</td>
<td>0-50</td>
<td>SC 32-2.5</td>
</tr>
<tr>
<td>KS 8-100M</td>
<td>0-8</td>
<td>0-100</td>
<td>SC 32-5</td>
</tr>
<tr>
<td>KS 18-10M</td>
<td>0-18</td>
<td>0-10</td>
<td>0-33</td>
</tr>
<tr>
<td>KS 18-15M</td>
<td>0-18</td>
<td>0-15</td>
<td>PAX 36-0.3</td>
</tr>
<tr>
<td>KS 18-25M</td>
<td>0-18</td>
<td>0-25</td>
<td>SC 36-1</td>
</tr>
<tr>
<td>KS 18-50M</td>
<td>0-18</td>
<td>0-50</td>
<td>CK 36-1.5M</td>
</tr>
<tr>
<td>KS 36-5M</td>
<td>0-36</td>
<td>0-5</td>
<td>0-36</td>
</tr>
<tr>
<td>KS 36-10M</td>
<td>0-36</td>
<td>0-10</td>
<td>0-36</td>
</tr>
<tr>
<td>KS 36-15M</td>
<td>0-36</td>
<td>0-15</td>
<td>0-36</td>
</tr>
<tr>
<td>KS 36-30M</td>
<td>0-36</td>
<td>0-30</td>
<td>0-36</td>
</tr>
<tr>
<td>KS 60-2M</td>
<td>0-60</td>
<td>0-2</td>
<td>0-36</td>
</tr>
<tr>
<td>KS 60-5M</td>
<td>0-60</td>
<td>0-5</td>
<td>0-36</td>
</tr>
<tr>
<td>KS 60-10M</td>
<td>0-60</td>
<td>0-10</td>
<td>0-36</td>
</tr>
<tr>
<td>KS 60-20M</td>
<td>0-60</td>
<td>0-20</td>
<td>0-36</td>
</tr>
<tr>
<td>PAX 7-1</td>
<td>0-7</td>
<td>0-1</td>
<td>0-36</td>
</tr>
<tr>
<td>PAX 14-0.75</td>
<td>0-14</td>
<td>0-0.75</td>
<td>0-36</td>
</tr>
<tr>
<td>PAX 21-0.5</td>
<td>0-21</td>
<td>0-0.5</td>
<td>0-36</td>
</tr>
<tr>
<td>PAX 36-0.3</td>
<td>0-36</td>
<td>0-0.3</td>
<td>0-36</td>
</tr>
<tr>
<td>PAX 72-0.15</td>
<td>0-72</td>
<td>0-0.15</td>
<td>0-36</td>
</tr>
<tr>
<td>PR 15-10M</td>
<td>0-7.5-15</td>
<td>0-10</td>
<td>0-36</td>
</tr>
<tr>
<td>PR 15-30M</td>
<td>0-15</td>
<td>0-30</td>
<td>0-36</td>
</tr>
<tr>
<td>PR 38-5M</td>
<td>0-19-38</td>
<td>0-5</td>
<td>0-40</td>
</tr>
<tr>
<td>PR 38-15M</td>
<td>0-38</td>
<td>0-15</td>
<td>0-40</td>
</tr>
<tr>
<td>PR 80-2.5M</td>
<td>0-40-80</td>
<td>0-2.5</td>
<td>0-40</td>
</tr>
<tr>
<td>PR 80-6M</td>
<td>0-80</td>
<td>0-8</td>
<td>0-45</td>
</tr>
<tr>
<td>PR 155-1M</td>
<td>0-78-155</td>
<td>0-1</td>
<td>48</td>
</tr>
<tr>
<td>PR 155-4M</td>
<td>0-155</td>
<td>0-4</td>
<td>0-50</td>
</tr>
<tr>
<td>PR 220-3M</td>
<td>0-220</td>
<td>0-3</td>
<td>0-60</td>
</tr>
<tr>
<td>PR 310-0.6M</td>
<td>0-165-310</td>
<td>0-0.6</td>
<td>0-60</td>
</tr>
<tr>
<td>PR 310-2M</td>
<td>0-310</td>
<td>0-2</td>
<td>0-60</td>
</tr>
<tr>
<td>PR 20-100AM</td>
<td>0-20</td>
<td>0-100</td>
<td>0-60</td>
</tr>
<tr>
<td>PR 40-50AM</td>
<td>0-40</td>
<td>0-50</td>
<td>0-60</td>
</tr>
<tr>
<td>PR 50-40AM</td>
<td>0-50</td>
<td>0-40</td>
<td>60</td>
</tr>
<tr>
<td>PRM 6-25</td>
<td>6.3</td>
<td>0-25</td>
<td>0-70</td>
</tr>
<tr>
<td>PRM 12-15</td>
<td>12</td>
<td>0-15</td>
<td>0-72</td>
</tr>
<tr>
<td>PRM 18-10</td>
<td>18</td>
<td>0-10</td>
<td>SC 3672-0.5M</td>
</tr>
<tr>
<td>PRM 24-8</td>
<td>24</td>
<td>0-8</td>
<td>0-36-72</td>
</tr>
<tr>
<td>PRM 28-7</td>
<td>28</td>
<td>0-7</td>
<td>0-75</td>
</tr>
</tbody>
</table>
Design Group Index

0.1% Regulation Models

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 18-1M</td>
<td>0-18</td>
<td>0-1</td>
<td>0-75</td>
<td>0-5</td>
</tr>
<tr>
<td>SC 18-2M</td>
<td>0-18</td>
<td>0-2</td>
<td>0-75</td>
<td>0-8</td>
</tr>
<tr>
<td>SC 18-4M</td>
<td>0-18</td>
<td>0-4</td>
<td>0-40</td>
<td>0-2.5</td>
</tr>
<tr>
<td>SC 33-5M</td>
<td>0-33</td>
<td>0-5</td>
<td>0-80</td>
<td>0-2</td>
</tr>
<tr>
<td>SC 36-1M</td>
<td>0-36</td>
<td>0-1</td>
<td>0-80-80</td>
<td>0-2.5</td>
</tr>
<tr>
<td>SC 36-2M</td>
<td>0-36</td>
<td>0-2</td>
<td>0-80</td>
<td>0-8</td>
</tr>
<tr>
<td>SC 3672-0.5M</td>
<td>36-72</td>
<td>0-0.5</td>
<td>0-80</td>
<td>0-0.2</td>
</tr>
<tr>
<td>SC 3672-1M</td>
<td>0-36-72</td>
<td>0-1</td>
<td>2SC 100-0.2</td>
<td>0-2</td>
</tr>
</tbody>
</table>

Dual:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>0-0.2</td>
<td>2SC 100-0.2</td>
</tr>
</tbody>
</table>

0.01% Regulation Models

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC 32-1.5</td>
<td>0-32</td>
<td>0-1.5</td>
</tr>
<tr>
<td>Dual Output</td>
<td>0-32</td>
<td>0-1.5</td>
</tr>
<tr>
<td>SC 32-2.5</td>
<td>0-32</td>
<td>0-2.5</td>
</tr>
<tr>
<td>SC 32-6</td>
<td>0-32</td>
<td>0-5</td>
</tr>
<tr>
<td>2SC 100-0.2</td>
<td>0-100</td>
<td>0-0.2</td>
</tr>
<tr>
<td>Dual Output</td>
<td>0-100</td>
<td>0-0.2</td>
</tr>
</tbody>
</table>

0.01% Line Regulation

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 14-7M</td>
<td>0-14</td>
<td>0-7</td>
<td>0-150</td>
<td>0-0.125</td>
</tr>
<tr>
<td>SM 14-15M</td>
<td>0-14</td>
<td>0-15</td>
<td>0-150</td>
<td>0-0.3</td>
</tr>
<tr>
<td>SM 14-30M</td>
<td>0-14</td>
<td>0-30</td>
<td>0-150</td>
<td>0-0.6</td>
</tr>
<tr>
<td>SM 36-5M</td>
<td>0-36</td>
<td>0-5</td>
<td>0-150</td>
<td>0-1</td>
</tr>
<tr>
<td>SM 36-10M</td>
<td>0-36</td>
<td>0-10</td>
<td>0-150</td>
<td>0-0.2</td>
</tr>
<tr>
<td>SM 36-15M</td>
<td>0-36</td>
<td>0-15</td>
<td>0-150</td>
<td>0-1</td>
</tr>
<tr>
<td>SM 75-2M</td>
<td>0-75</td>
<td>0-2</td>
<td>0-150</td>
<td>0-0.2</td>
</tr>
<tr>
<td>SM 75-5M</td>
<td>0-75</td>
<td>0-5</td>
<td>0-150</td>
<td>0-0.3</td>
</tr>
<tr>
<td>SM 75-8M</td>
<td>0-75</td>
<td>0-8</td>
<td>0-150</td>
<td>0-0.6</td>
</tr>
<tr>
<td>SM 160-1M</td>
<td>0-160</td>
<td>0-1</td>
<td>0-150</td>
<td>0-1</td>
</tr>
<tr>
<td>SM 160-2M</td>
<td>0-160</td>
<td>0-2</td>
<td>0-150</td>
<td>0-0.2</td>
</tr>
<tr>
<td>SM 160-4M</td>
<td>0-160</td>
<td>0-4</td>
<td>0-150</td>
<td>0-0.2</td>
</tr>
<tr>
<td>SM 325-0.5M</td>
<td>0-165-325</td>
<td>0-0.5</td>
<td>0-150</td>
<td>0-0.2</td>
</tr>
<tr>
<td>SM 325-1M</td>
<td>0-325</td>
<td>0-1</td>
<td>0-150</td>
<td>0-0.2</td>
</tr>
<tr>
<td>SM 325-2M</td>
<td>0-325</td>
<td>0-2</td>
<td>0-150</td>
<td>0-0.2</td>
</tr>
</tbody>
</table>

2400 B

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0-150</td>
<td>0-0.005</td>
</tr>
<tr>
<td>#2</td>
<td>0-400</td>
<td>0-0.15</td>
</tr>
<tr>
<td>#3</td>
<td>0-400</td>
<td>0-0.15</td>
</tr>
<tr>
<td>Parallel</td>
<td>0-800</td>
<td>0-0.15</td>
</tr>
<tr>
<td>#2 & #3</td>
<td>0-400</td>
<td>0-0.3</td>
</tr>
<tr>
<td>Series</td>
<td>#2 & #3</td>
<td>0-150</td>
</tr>
</tbody>
</table>

400B

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>0-400</td>
<td>0-0.15</td>
</tr>
<tr>
<td>0-150</td>
<td>0-0.005</td>
<td>0-150</td>
</tr>
</tbody>
</table>

Index by Output Voltage

<table>
<thead>
<tr>
<th>DC Output Volts</th>
<th>DC Output Amps</th>
<th>MODEL</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-75</td>
<td>0-5</td>
<td>SM 75-5M</td>
<td>38-39</td>
</tr>
<tr>
<td>0-75</td>
<td>0-8</td>
<td>SM 75-8M</td>
<td>38-39</td>
</tr>
<tr>
<td>0-40-80</td>
<td>0-2.5</td>
<td>PR 80-2.5M</td>
<td>32-33</td>
</tr>
<tr>
<td>0-80</td>
<td>0-2</td>
<td>PR 80-2M</td>
<td>32-33</td>
</tr>
<tr>
<td>0-100</td>
<td>0-0.2</td>
<td>2SC 100-0.2</td>
<td>36-37</td>
</tr>
<tr>
<td>120</td>
<td>0-1.5</td>
<td>PRM 120-1.5</td>
<td>34-35</td>
</tr>
<tr>
<td>0-150</td>
<td>0-0.125</td>
<td>KR 151M</td>
<td>26-27</td>
</tr>
<tr>
<td>0-150</td>
<td>0-0.3</td>
<td>KR 152M</td>
<td>26-27</td>
</tr>
<tr>
<td>0-150</td>
<td>0-0.6</td>
<td>KR 8M</td>
<td>26-27</td>
</tr>
<tr>
<td>0-78-155</td>
<td>0-1</td>
<td>PR 155-1M</td>
<td>32-33</td>
</tr>
<tr>
<td>0-155</td>
<td>0-4</td>
<td>PR 155-4M</td>
<td>32-33</td>
</tr>
<tr>
<td>0-160</td>
<td>0-1</td>
<td>SM 160-1M</td>
<td>38-39</td>
</tr>
<tr>
<td>0-160</td>
<td>0-2</td>
<td>SM 160-2M</td>
<td>38-39</td>
</tr>
<tr>
<td>0-160</td>
<td>0-4</td>
<td>SM 160-4M</td>
<td>38-39</td>
</tr>
<tr>
<td>0-200</td>
<td>0-0.1</td>
<td>ABC 200M</td>
<td>18-19</td>
</tr>
<tr>
<td>100-200</td>
<td>0-0.125</td>
<td>KR 1M</td>
<td>26-27</td>
</tr>
<tr>
<td>100-200</td>
<td>0-0.3</td>
<td>KR 3M</td>
<td>26-27</td>
</tr>
<tr>
<td>100-200</td>
<td>0-0.6</td>
<td>KR 5M</td>
<td>26-27</td>
</tr>
<tr>
<td>0-220</td>
<td>0-3</td>
<td>PR 220-3M</td>
<td>32-33</td>
</tr>
<tr>
<td>0-225</td>
<td>0-1</td>
<td>HB 225M</td>
<td>22-23</td>
</tr>
<tr>
<td>0-300</td>
<td>0-0.075</td>
<td>103</td>
<td>40-41</td>
</tr>
<tr>
<td>0-300</td>
<td>0-0.075</td>
<td>Unregulated</td>
<td>40-41</td>
</tr>
<tr>
<td>0-165-310</td>
<td>0-0.6</td>
<td>PR 310-0.6M</td>
<td>32-33</td>
</tr>
<tr>
<td>0-310</td>
<td>0-2</td>
<td>PR 310-2M</td>
<td>32-33</td>
</tr>
<tr>
<td>0-165-325</td>
<td>0-0.5</td>
<td>SM 325-0.5M</td>
<td>36-39</td>
</tr>
<tr>
<td>0-325</td>
<td>0-0.2</td>
<td>HB 2AM</td>
<td>22-23</td>
</tr>
<tr>
<td>0-325</td>
<td>0-0.4</td>
<td>HB 4AM</td>
<td>22-23</td>
</tr>
<tr>
<td>0-325</td>
<td>0-0.8</td>
<td>HB 8AM</td>
<td>22-23</td>
</tr>
<tr>
<td>0-325</td>
<td>0-0.8</td>
<td>HB 8AM</td>
<td>22-23</td>
</tr>
<tr>
<td>0-325</td>
<td>0-1</td>
<td>SM 325-1M</td>
<td>38-39</td>
</tr>
<tr>
<td>0-325</td>
<td>0-2</td>
<td>SM 325-2M</td>
<td>38-39</td>
</tr>
<tr>
<td>195-325</td>
<td>0-0.125</td>
<td>KR 2M</td>
<td>26-27</td>
</tr>
<tr>
<td>195-325</td>
<td>0-0.3</td>
<td>KR 4M</td>
<td>26-27</td>
</tr>
<tr>
<td>195-325</td>
<td>0-0.6</td>
<td>KR 6M</td>
<td>26-27</td>
</tr>
<tr>
<td>0-400</td>
<td>0-0.15</td>
<td>400B</td>
<td>40-41</td>
</tr>
<tr>
<td>0-400</td>
<td>0-0.15</td>
<td>400B</td>
<td>40-41</td>
</tr>
<tr>
<td>0-150 bias</td>
<td>0-0.005</td>
<td>400B</td>
<td>40-41</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

- Ordering Information ... Page 6
- Kepco Literature ... Page 6
- Application Notes .. Pages 8-15
- VIX Nomograph .. Page 13
- Programmable Voltage/Current Models Page 14
- Nomograph of Voltage Drop Page 15
- Glossary of Power Supply Terms Pages 42-46
- Kepco Accessory Equipment Pages 47-51

- POWER SUPPLY SPECIFICATIONS:
 - ABC All-Transistor GROUP Pages 16-17
 - ABC Hybrid GROUP Pages 18-19
 - CK GROUP .. Pages 20-21
 - HB GROUP .. Pages 22-23
 - KO GROUP .. Pages 24-25
 - KR GROUP .. Pages 26-27
 - KS GROUP ... Pages 28-29
 - PAX GROUP ... Pages 30-31
 - PR GROUP ... Pages 32-33
 - PRM GROUP ... Pages 34-35
 - SC GROUP ... Pages 36-37
 - SM GROUP ... Pages 38-39
 - WR GROUP ... Pages 40-41

DESIGN GROUP INDEX

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC OUTPUT VOLTS</th>
<th>DC OUTPUT AMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>430 D #1</td>
<td>0-450</td>
<td>0-0.3</td>
</tr>
<tr>
<td>430 D #2</td>
<td>0-450</td>
<td>0-0.3</td>
</tr>
<tr>
<td>Parallel #1 & #2</td>
<td>0-450</td>
<td>0-0.6</td>
</tr>
<tr>
<td>Series #1 & #2</td>
<td>0-900</td>
<td>0-0.3</td>
</tr>
<tr>
<td>800 B #1 #2</td>
<td>0-600</td>
<td>0-0.2</td>
</tr>
<tr>
<td>Parallel #1 & #2</td>
<td>0-600</td>
<td>0-0.4</td>
</tr>
<tr>
<td>Series #1 & #2</td>
<td>0-1200</td>
<td>0-0.2</td>
</tr>
<tr>
<td>605</td>
<td>0-600 Bias 0-150</td>
<td>0-0.3 0-0.005</td>
</tr>
<tr>
<td>615B</td>
<td>0-600 Bias 0-150</td>
<td>0-0.3 0-0.005</td>
</tr>
<tr>
<td>103 #1 Unregulated #2 #3</td>
<td>0-300</td>
<td>0-0.075</td>
</tr>
<tr>
<td>Parallel #1 & #2</td>
<td>0-300</td>
<td>0-0.150</td>
</tr>
<tr>
<td>1250 B</td>
<td>0-1000</td>
<td>0-0.5</td>
</tr>
<tr>
<td>1220 C</td>
<td>0-1200</td>
<td>0-0.05</td>
</tr>
<tr>
<td>1520 B</td>
<td>0-1500</td>
<td>0-0.2</td>
</tr>
<tr>
<td>HB 2050</td>
<td>0-2000</td>
<td>0-0.5</td>
</tr>
<tr>
<td>HB 2500</td>
<td>0-2500</td>
<td>0-0.05</td>
</tr>
</tbody>
</table>

INDEX BY OUTPUT VOLTAGE

<table>
<thead>
<tr>
<th>DC OUTPUT VOLTS</th>
<th>DC OUTPUT AMPS</th>
<th>MODEL</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-400</td>
<td>0-0.15</td>
<td>240B</td>
<td>40-41</td>
</tr>
<tr>
<td>0-400</td>
<td>0-0.15</td>
<td>300B</td>
<td>40-41</td>
</tr>
<tr>
<td>0-150 bias</td>
<td>0-0.005</td>
<td>Multiple Output</td>
<td></td>
</tr>
<tr>
<td>0-400</td>
<td>0-0.05</td>
<td>ABC 426M</td>
<td>18-19</td>
</tr>
<tr>
<td>295-450</td>
<td>0-0.125</td>
<td>KR 9M</td>
<td>26-27</td>
</tr>
<tr>
<td>295-450</td>
<td>0-0.3</td>
<td>KR 10M</td>
<td>26-27</td>
</tr>
<tr>
<td>295-450</td>
<td>0-0.6</td>
<td>KR 7M</td>
<td>26-27</td>
</tr>
<tr>
<td>0-450</td>
<td>0-0.3</td>
<td>Multiple Output</td>
<td>40-41</td>
</tr>
<tr>
<td>0-450</td>
<td>0-0.3</td>
<td>430D</td>
<td>40-41</td>
</tr>
<tr>
<td>0-525</td>
<td>0-0.5</td>
<td>HB 525M</td>
<td>22-23</td>
</tr>
<tr>
<td>0-600</td>
<td>0-0.3</td>
<td>615B</td>
<td>40-41</td>
</tr>
<tr>
<td>0-600</td>
<td>0-0.005</td>
<td>615B</td>
<td>40-41</td>
</tr>
<tr>
<td>0-600</td>
<td>0-0.005</td>
<td>605</td>
<td>40-41</td>
</tr>
<tr>
<td>0-1000</td>
<td>0-0.02</td>
<td>ABC 1000M</td>
<td>18-19</td>
</tr>
<tr>
<td>0-1000</td>
<td>0-0.5</td>
<td>1250B</td>
<td>40-41</td>
</tr>
<tr>
<td>0-1200</td>
<td>0-0.05</td>
<td>1220C</td>
<td>40-41</td>
</tr>
<tr>
<td>0-1500</td>
<td>0-0.01</td>
<td>ABC 1500M</td>
<td>18-19</td>
</tr>
<tr>
<td>0-1500</td>
<td>0-0.2</td>
<td>1820B</td>
<td>40-41</td>
</tr>
<tr>
<td>0-2000</td>
<td>0-0.5</td>
<td>HB 2050</td>
<td>40-41</td>
</tr>
<tr>
<td>0-2500</td>
<td>0-0.002</td>
<td>ABC 2500M</td>
<td>18-19</td>
</tr>
<tr>
<td>0-2500</td>
<td>0-0.005</td>
<td>HB 2500</td>
<td>40-41</td>
</tr>
</tbody>
</table>
a reliable source for all of your Regulated DC Power Supply needs

ORDERING INFORMATION

All of the power supplies described in this catalog are regular production items, not specials, not "built to order". Our inventory will, at almost any given time, contain substantial quantities of 60-85% of all of the listed models. Your local Kepco Field Engineering Office receives weekly inventory reports and is equipped to quote price and delivery directly.

Communications:

Kepco maintains complete communication facilities including postal, telephone, Western Union (WUX) and teletype (TWX) facilities:

Mail Address and WUX 131-38 Sanford Ave.,
 Flushing, N. Y. 11352
Telephone Number (212) IN 1-7000
TWX Number 212-539-6623
Cable Address KEPCOPOWER NEW YORK

Orders:

Please use the Kepco model number to describe the power supply that you want. If your organization has assigned specification control numbers to our standard models, please list our model number also to assist our order processing department in filling your order with least delay. Unless otherwise specified, orders are shipped via motor freight. Liaison is maintained with all shipping agencies and Metropolitan New York Airports.

Warranty:

All Kepco products are backed by a valid, unconditional repair guarantee — for one year after date of sale. Our entire staff of nationwide representative field engineers are factory trained to assist you in obtaining the best performance from each Kepco Power Supply. Each field engineer is prepared to render on-the-spot field service and many of our representative organizations maintain full service centers for overhaul and maintenance. For the address and telephone number of your local Kepco Field Engineer, refer to the back cover of this catalog.

Parts:

Recognizing the importance of providing proper equipment support after delivery to our customers, Kepco maintains a complete inventory of every component needed to service any Kepco Power Supply regardless of age. When writing to us or to our local field representative organizations concerning spare parts, please refer to the model and serial number of the equipment involved. Also give a description of the part and the Kepco part number.

KEPCO LITERATURE

This Catalog is one of a number of Kepco publications designed to assist you in the selection and application of Regulated Power Supplies. Kepco publications include: a 40 page reference handbook "Notes on Systems Applications of Regulated Power Supplies", reprints of current technical papers, and a bi-monthly newspaper, the Kepco Power Supply News.

1. NOTES ON SYSTEMS APPLICATIONS OF REGULATED POWER SUPPLIES

This handbook presents the basic theory of Regulated Power Supply design, including a detailed treatment of the Kepco comparison bridge regulator, systems interconnections, programming techniques, and applications data.

2. TECHNICAL PAPERS

Kepco's engineers are continuously engaged in a research effort to extend the dimensions of the Power Supply art. Their work is regularly published and reprints are available to interested Power Supply users.

3. KEPCO POWER SUPPLY NEWS

A technical journal published bi-monthly with articles and news stories reporting developments in the Power Supply field.

For a complimentary copy of the "Notes on Systems Applications of Regulated Power Supplies", reprints of technical papers, or a subscription to the Kepco Power Supply News, write:

Publications Manager, KEPCO, INC.,
131-38 Sanford Ave., Flushing, N.Y. 11352

Copies of these Kepco publications are also available through Kepco's field representatives.

131-38 SANFORD AVENUE • FLUSHING, N.Y. 11352 • Phone: (212) IN 1-7000
TWX #212-539-6623 • Cable Address: KEPCOPOWER, NEW YORK
the specialist in
de regulated power supplies

Kepco, after 17 years, continues as a leading contributor to the art of power supply design. Kepco's specialization and concentration in Regulated Power Supplies is supported by extensive research, design and manufacturing facilities. Two large plants house the Electronics Laboratory, Magnetics Laboratory, manufacturing facility and offices.

Value engineering, stressing reliability and versatility, are keynotes at Kepco; a fact that can be attested to by thousands of critical users. Elaborate laboratory test facilities and extensive production testing are designed to maintain a high level of quality control. This, together with outstanding engineering, result in a quality product whose many patented features make the difference in performance, exceptional long life and the reliability expected of all Kepco power supplies.

To maintain Kepco's traditional product superiority, a Quality Assurance Program is in effect through all phases of the manufacturing operation. This program, conforming basically to MIL-Q-9850, is approved by leading contractors to the U. S. Military Services. Many thousands of power supply installations, reporting negligible down time, are testimonials to Kepco's engineering and manufacturing skills.

KEPCO'S CONTRIBUTIONS TO THE POWER SUPPLY FIELD

- Short Circuit Protection by Current Limiting
- Full Range Regulation
- Efficient Slave Pass Circuit
- Elimination of Voltage Overshoot
- Remote Programming
- Remote Error Sensing
- Hybrid Regulators
- Thermal Protection
- High Efficiency Lateral Cooling
- The Flux-O-Tran Line Regulator
- Versatile Programmable Modules
- VIX Indicators and Signalling
- Programming Devices
- Automatic Crossover Voltage/Current Regulators
- Voltage Comparison Bridge Regulator
- Wide Range Magnetic Regulator
- Proportional Control of Multiple Systems

Having set the pace in the power supply field, Kepco continues to improve concepts and design techniques to meet the needs of advanced electronic systems.

Patents issued and pending. Patent numbers available on request.
MEASUREMENTS

To properly measure regulation, ripple, stability and other performance characteristics of precision DC power supplies, considerable care in the use of sensitive instrumentation is required. In particular, one must avoid introducing excessive errors through the way in which the instrumentation is connected. Of particular concern are the voltage drops which occur in the connections to the output terminals and in the wiring to the load. The resistance of connections and wires is often overlooked, yet even a few milliohms in a critical measuring path can introduce sufficient error as to render the measurement meaningless.

As an example, consider a Model KS 36-10M; 36V, 10A, 0.01% regulated power supply. The 0.01% figure means that the output voltage will not vary by more than 3.6 millivolts, as load current is changed from 0 to 10 amperes. This is equivalent to an internal resistance of 0.36 milliohms. Any resistance of comparable magnitude in the current carrying portions of the output circuit will greatly degrade the regulation and must be avoided. Ordinary 4-terminal network theory is applicable and an internal resistance of 0.36 milliohms is required. In particular, one must avoid introducing excessive errors through the way in which the instrumentation is connected. Of particular concern are the voltage drops which occur in the connections to the output terminals and in the wiring to the load. The resistance of connections and wires is often overlooked, yet even a few milliohms in a critical measuring path can introduce sufficient error as to render the measurement meaningless.

The wire drop nomograph on Page 15 shows that #10 gage wire will drop 10 mv for each 10 amperes current flow. One foot of wire is equivalent to six inches of wire at each of the plus and minus output terminals. The 10 mv loss is three times larger than the 3.6 millivolt figure which should be measured. Considering that a typical 0.01% power supply will often yield better than 0.001% regulation, measurements must be sensitive to very small fractions of a millivolt, and the magnitude of the wire drop problem becomes apparent.

If it should be evident that remote error sensing is essential for all high precision applications of low voltage, high current power supplies. Remote error sensing permits the user to compensate for line drops (usually up to 0.5 volts per lead) so that the rated regulation performance of the power supply is obtained directly at the load.

THE MINIMUM "DELTA V"

Many regulation specifications are expressed as a fixed percentage of volts change, whichever is greater. Similarly, current regulation specifications will sometimes state a minimum delta 1 millivolt along with the rated percentage change. This form is required so that an accurate specification can be written on a variable parameter. Using voltage as an example, most power supplies are capable of a range of output voltages; from zero to some rated voltage is typical. A constant percentage specification would obviously rapidly require zero error as zero volts is approached; but, since the regulated power supply, like any feedback mechanism, requires a finite error signal to actuate the process of regulation, there is a minimum error which must exist. This minimum error represents a measure of the power supply's resolution and sensitivity.

The minimum delta V (ΔV) figure is used to determine the performance that can be expected whenever a power supply is used at less than its maximum output rating. A 0.01% or 0.5 millivolt (whichever is greater) rating, means that at least 0.01% performance will be obtained at voltages as low as 5 volts; even at 1 volt output, the performance would be no worse than 0.05%. By contrast, a power supply rated 0.01% or 5 millivolts, whichever is greater, cannot deliver 0.01% performance below 50 volts, and at 1 volt output is down to 0.5 percent. The "minimum delta V" portion of any specification is equally as important as the rated percentage and must not be overlooked when comparing specifications.

DYNAMIC IMPEDANCE

The source impedance presented by a power supply to its load is a complex frequency-dependent number. It consists of an equivalent resistance determined by the power supply's regulation specification (a function of the comparison amplifier's gain), a reactive component dependent on the output filter capacitor and a reactive component which depends on the wiring inductance. The capacitive reactance is effective only at low frequencies and so is usually swamped out by the amplifier gain. The inductive component becomes the predominant part of the impedance at frequencies above approximately 10 kc. Impedance is usually specified as the maximum complex (resultant) impedance within a given frequency band.
The effective series inductance is also given so that the impedance can be computed for frequencies above 10 kc.

The given inductance figure does not, of course, include the inductance of the load connecting wires. Assuming a straight wire, the self inductance can be computed by the formula:

$L(\text{in} \mu \text{H}) = 0.0061 \left(2.3 \log \frac{4I_d}{d} - 0.75\right)$

where I is the length of wire, and d its diameter, both in inches.

Many circuits depend upon the decoupling effect of a power supply's low source impedance. It is evident from the foregoing that this decoupling, and the entire transient behavior of the supply is strongly influenced by the inductance of the load connecting wires. Remote error sensing does not compensate for this effect since the sensing wires themselves have as much inductance as the load wires.

The following procedures are recommended to minimize the effect of wiring inductance: wherever possible, load wires should be twisted together and should be of the heaviest possible gage since this will minimize the inductance. Similarly, remote error sensing wires should be twisted together. To establish a low source impedance at the load, at frequencies where the line inductance is significant, a capacitor bypass directly at the load terminals is very useful. Such a capacitor acts as a local energy source, compensating for the load wiring inductance. When particularly long sensing leads are used, it is sometimes helpful to connect local sensing bypass capacitors at the power supply. These would be placed between the individual plus and minus output terminal and their respective error sensing terminal. They serve to bypass the combination load-wire and sense-wire inductance and prevent transient instability.

OUTPUT VOLTAGE PROGRAMMING

The unique Kepco comparison bridge circuit enables all Kepco programmable Power Supplies to be externally controlled over their entire output voltage range. All of the models listed on Page 14 have provision for purely resistive programming. In addition, all ABC, CK, PAX, KS and KO models have provision for remote programming by means of external resistances, or voltage sources; or may be inversely resistance programmed. SC, and HB models are easily modified for programming with remote voltage sources and for inverse programming.

For a detailed treatment of the programming feature, refer to "Notes on Systems Applications of Regulated Power Supplies," Kepco publication #146-0056. See Page 6.

CONSTANT CURRENT OPERATION

Current control is achieved by sensing a small sample voltage developed across a resistor placed in series with the load. The power supply is controlled so as to maintain this sample voltage constant, thus providing current regulation. In such operation, the voltage across the load changes in direct proportion to the load resistance, and is known as the voltage compliance. The maximum compliance is equal to the output voltage range of the Power Supply.

Kepco CK, KS and KO models incorporate two regulator bridge circuits and a unique gate which automatically switches the mode of operation between them from constant voltage to constant current depending on the relative settings of the voltage and current controls and on the load resistance. This feature is called "Automatic Crossover".

Power supplies with the automatic crossover feature can be remotely controlled in either or both modes by means of remote resistances or voltage sources, or they can be inversely resistance programmed (see output voltage programming). These models can also be operated in the constant current mode using an external sensing resistor. When employing "external sensing", current control is achieved with an external programming resistance or voltage source, or it can be inversely resistance programmed. The Kepco ABC, SC, PAX and HB models can be operated in the constant current mode using external sensing and programming only.

The external current sensing resistor carries the full load current and in all-transistor models is selected to drop 1 volt at the operating current. For HB models, and the hybrid units in the ABC design group, the sensing resistor is selected to drop 10 volts at the operating current. This resistor should have a low temperature coefficient and should be conservatively rated for power dissipation. At least a ten times derating factor is recommended. The current control rheostat used to vary the current, carries only the control bridge current of the power supply, either 1, 3.3 or 10 ma as the case may be. This current control can be used to vary the output current (for a fixed sensing resistor) over as much as a 10:1 ratio.
VOLTAGE LIMITING

Some form of overload (voltage) limiting for power supply operation in the current regulation mode is a desirable feature. Adjustable limiting is, of course, provided in all automatic crossover power supplies where the voltage control setting serves as the upper limit to the voltage compliance. When external sensing is used to generate current regulation, or non-automatic crossover power supplies are set up for current regulation, voltage limiting must be provided by external means.

A current regulator, in the ideal sense, will treat any open circuit as if it were an overload. The terminal voltage will rise toward infinity as the supply tries to maintain its pre-set current through the infinite load resistance. Actually, of course, the "infinite" voltage is limited to the maximum available raw DC that the transformer-rectifiers can generate. This is dependent on line voltage, but is usually about 150% of the supply's regulated output rating (or band switch position in an HB model). When the output voltage reaches this maximum it is limited, and so the current cannot be maintained through the load. This constitutes the overload condition for a current regulator.

It may be desirable to introduce voltage limiting in such power supplies so that the limiting point would be independent of line voltage, or would be at a lower value to protect a load. Such limiting is easily introduced by means of appropriate zener diodes. A zener diode of appropriate voltage breakdown of line voltage or would be at a lower value to protect a load. This light current permits the use of relatively small inexpensive zeners even though the current rating of the power supply is less than the zener breakdown rating, the diode does not conduct and has no effect upon the power supply's performance. When the voltage tries to exceed the zener rating, the diode will conduct causing the voltage to be limited to the zener rating.

The maximum zener current would equal the rated bridge current of the power supply in question. 1 ma, 3.3 ma or 10 ma are typical values (control ratios of 1000 ohms/volt, 300 ohms/volt, and 100 ohms/volt respectively).

This light current permits the use of relatively small inexpensive zeners even though the current rating of the power supply may be dozens of amperes. Since zeners can be obtained in a variety of voltage breakdown ratings, and can be series connected if desired, this method offers a quick and inexpensive way of obtaining fixed voltage limiting. Because the zener "knee" is not likely to be particularly sharp at the light bridge current, it is recommended that the zener be selected for at least 10% excess voltage above the maximum desired compliance.

It should be noted that voltage limiting is not restricted to current regulators. Many voltage regulator operations require that the voltage not exceed a particular setting. A zener limiter can guard against inadvertent operator error, improper adjustment, etc. Of course, for critical loads, positive fail safe protection can be obtained with a VIP Load Protector—see Accessory Page 49.

VOLTAGE LIMITING FOR CURRENT MODE OPERATION
WHERE AUTOMATIC CROSSOVER IS INAPPLICABLE

When the compliance voltage (output voltage) of the power supply is less than the zener breakdown rating, the diode does not conduct and has no effect upon the power supply's performance. When the voltage tries to exceed the zener rating, the diode will conduct causing the voltage to be limited to the zener rating.

The maximum zener current would equal the rated bridge current of the power supply in question. 1 ma, 3.3 ma or 10 ma are typical values (control ratios of 1000 ohms/volt, 300 ohms/volt, and 100 ohms/volt respectively).

This light current permits the use of relatively small inexpensive zeners even though the current rating of the power supply may be dozens of amperes. Since zeners can be obtained in a variety of voltage breakdown ratings, and can be series connected if desired, this method offers a quick and inexpensive way of obtaining fixed voltage limiting. Because the zener "knee" is not likely to be particularly sharp at the light bridge current, it is recommended that the zener be selected for at least 10% excess voltage above the maximum desired compliance.

It should be noted that voltage limiting is not restricted to current regulators. Many voltage regulator operations require that the voltage not exceed a particular setting. A zener limiter can guard against inadvertent operator error, improper adjustment, etc. Of course, for critical loads, positive fail safe protection can be obtained with a VIP Load Protector—see Accessory Page 49.

VOLTAGE LIMITING IN VOLTAGE MODE OPERATION

Note: Limiting voltage equals the load voltage plus the drop across the sensing resistor.

When the compliance voltage (output voltage) of the power supply is less than the zener breakdown rating, the diode does not conduct and has no effect upon the power supply's performance. When the voltage tries to exceed the zener rating, the diode will conduct causing the voltage to be limited to the zener rating.

The maximum zener current would equal the rated bridge current of the power supply in question. 1 ma, 3.3 ma or 10 ma are typical values (control ratios of 1000 ohms/volt, 300 ohms/volt, and 100 ohms/volt respectively).

This light current permits the use of relatively small inexpensive zeners even though the current rating of the power supply may be dozens of amperes. Since zeners can be obtained in a variety of voltage breakdown ratings, and can be series connected if desired, this method offers a quick and inexpensive way of obtaining fixed voltage limiting. Because the zener "knee" is not likely to be particularly sharp at the light bridge current, it is recommended that the zener be selected for at least 10% excess voltage above the maximum desired compliance.

It should be noted that voltage limiting is not restricted to current regulators. Many voltage regulator operations require that the voltage not exceed a particular setting. A zener limiter can guard against inadvertent operator error, improper adjustment, etc. Of course, for critical loads, positive fail safe protection can be obtained with a VIP Load Protector—see Accessory Page 49.

MORE ON USING CURRENT REGULATION

As has been previously described, an open circuit load constitutes an overload to the pure current regulator just as a short circuit represents an overload for a pure voltage regulator.

In both instances, the power supply will attempt to maintain its regulated voltage or current through the load, increasing the other parameter, current or voltage, toward infinity as needed. When further increase becomes impossible, the power supply is said to "drop out of regulation" or become overloaded. An overload, in either mode, will not damage a well designed power supply, but it may cause some problems in application which require consideration.

Voltage regulation, because it is the historically dominant "natural" mode of operation, does not generate any real problem. No one would consider shorting out the terminals of a voltage regulator (battery) preliminary to the application of a load. If this were done, the overload would cause the voltage source potential to collapse and it would then have to build back up to its original voltage across the load.

Precisely the same dual situation prevails for current regulation although it is often overlooked. The proper way to apply a load is to start off from a short circuit, apply the load, then remove the short. To neglect this by applying the load to previously open circuited load terminals forces the current regulator to recover from its overload and gradually build up the load current from zero. Unfortunately, because the power supply contains an output filter capacitor, the excess terminal voltage will not instantly disappear—rather, it decays at the RC time constant that the load makes with the filter capacitor. This initial pulse of voltage can damage some sensitive loads and is to be avoided. The way to avoid it is to practice the correct "short circuit first" procedure for applying a load to a current source.
A way of remembering this is to recall that a load should always be applied to an idling power supply. In voltage mode the open circuit (no current) is idle. In current mode, the short circuit (no voltage) is idle.

Strictly, automatic crossover power supplies cannot be “overloaded” by either open or short circuits, since the power supply will always switch to whatever mode is appropriate for the loading. The same rules apply, however, so far as connecting the load is concerned. The only difference is that the mode of operation can easily be chosen by the user and his loading procedure tailored to fit.

PROGRAMMING SPEED

The PROGRAMMING SPEED (or RECOVERY TIME for CURRENT REGULATED operation) cannot, strictly, be specified independently for a power supply. These two parameters are identical and are functionally dependent on the RC time constant that the load resistance makes with the output filter capacitor. In addition, the current mode recovery time is modified by the charging time of the output capacitor, a linear function of the current setting.

In general, when the power supply is lightly loaded, the output capacitor can be charged rapidly but discharges more slowly. For heavy loading the contrary situation prevails with a slow charging time but relatively rapid discharge. At approximately 50% loading, the charging and discharging speeds are equal and for most supplies equals about 250 volts per second, which corresponds to the maximum programming speed.

In current mode, the recovery time can also be expressed in volts per second, dv/dt. Since the recovery time is the time that it takes for the voltage to change from one steady state value to another. A falling voltage follows the exponential decay of the filter capacitor through the remaining load resistance. For purposes of calculation, the equivalent output capacitance can be taken as approximately $C_{eq} = Q_{0}/250$, where Q_0 equals the current rating of the power supply. A rising voltage also follows an exponential except that it is additionally limited by the capacitor charging rate of the current control setting. This can be determined by the ratio of the current setting I_S to the power supply’s current rating I_D. The rate of increasing voltage, $dv/dt = (250)/(Q_{0}/I_D)$, is seen to be approximately the recovery time is easily computed for any selected voltage compliance swing.

SMALL CURRENT REGULATION

The conventional sampling techniques for current regulation do not permit operation down to zero current. With the fixed sensing resistor used for internal current sampling, for example, a lower current limit is imposed by the vanishingly small sample voltage as current approaches zero. When this sample voltage falls below the resolution limit of the amplifier, it becomes lost in the noise and regulation is no longer possible. When an external sensing resistor is employed, and the resistance can be increased to compensate for the vanishing current, the lower current limit is then imposed by the power supply’s own control bridge current. This current circulates counter to the normal direction of output current and opposes the voltage drop in the sensing resistor. When the output current equals the bridge current, the two in fact cancel, and the sampling signal approaches zero.

It is possible to circumvent these limits and control very small currents by using a non-sampling current regulation method, taking advantage of the isolation properties of the null junction. Since the null junction is at virtual ground potential, the current through it depends only upon the ratio E_R/R_2, and is unaffected by the value of the voltage control resistance, or the loading of the output terminals. This provides the constant bridge current in normal operation. To use this current, it is only necessary to substitute the load for the voltage control, using the power supply’s “programming” terminals for this purpose. The programming terminals will, in effect, become the new output terminals. The regular output terminals will not be used for anything, except that they do repeat the load compliance voltage and so are useful for metering or driving proportional loads. The output current is given by E_R/R_2, the reference voltage divided by the reference resistor. It can be adjusted at will by varying this ratio. Variations in E_R provide a linear direct control while variations in R_2 result in a nonlinear inverse $1/R_2$ control.

The existing fixed value E_R is derived from a zener diode. To control the output current, an external variable source can be substituted for E_R, the voltage is not important so long as it can deliver the desired current. For whatever voltage is available, select a suitable series resistor to substitute for R_1 so that the ratio E/R equals the desired load current. While it is possible to use the existing zener reference, E_R (at least in CK and KS power supplies where the needed access terminals are provided) it should be noted that this restricts the MAXIMUM current to no more than the value of the original bridge current for the supply. Moreover, when the output current is varied, some sacrifice in stability will be introduced by the resulting variations in current through the zener reference.

When connected as shown, excellent small-current regulation will be obtained, equal to the power supply’s abilities as a voltage regulator, and limited only by the stability of the source chosen for programming. The minimum current that can be regulated is determined by the amplifier leakage, a small current on the order of 4-15 microamperes flowing into the amplifier connection at the null junction. For control over exceedingly small currents, a cancellation technique is useful to eliminate the effect of this leakage. This consists of supplying an external source of current to cancel the leakage flow through the load. For All-Transistor models, a positive source is required relative to the minus output terminal of the power supply. For Hybrid supplies, a negative potential with respect to the plus output terminal is required.

In CK and KS power supplies, the zener reference for the current bridge is such a source. It delivers a ±6.2V potential to Terminal 2 on the barrier strip which may be borrowed to supply the cancellation current. A 1 megohm resistor from Terminal 2 to the null junction (Terminal 12 on CK and KS models) will cause 6.2 microamperes of cancellation current to flow. By suitably adjusting this resistor, exact cancellation can be obtained.

![Diagram](image-url)
With the LATERAL (side to side) ventilation design used in where the equipment is to be stacked, as in an enclosed cabinet rack.

The power supply fan may often be adequate to accomplish this cabinet venting. A cabinet rack installation with dissipative equipment is installed within the same enclosure, a cabinet venting fan may be indicated to reduce the interior temperature ranges. It is furthermore, a significant advantage for the larger values of current, the previously described sampling method of current regulation works well and should be used. ABC power supplies lack the plus reference source but they can easily be compensated with the aid of a small battery and appropriate resistance. A 1.35V mercury cell would be an excellent choice.

VENTILATION

Both convection cooled and forced air cooled equipment are listed in this catalog. Forced air cooling is used in high power units to insure reliable performance over the specified temperature ranges. It is furthermore, a significant advantage where the equipment is to be stacked, as in an enclosed cabinet rack.

With the LATERAL (side to side) ventilation design used in all KEPCO forced-air cooled units, a cabinet rack installation may require nothing more than venting perforations in the cabinet to encourage natural convection. When other highly dissipative equipment is installed within the same enclosure, a cabinet venting fan may be indicated to reduce the interior temperature to safe limits. The air movement created by the power supply fan may often be adequate to accomplish this cooling.

RACK MOUNTING

Most models are equipped with front mounting panels designed to enable the unit to be mounted directly in a standard 19 inch rack or cabinet. The half-rack size bench models may be mounted with accessory rack adapters which are available in kits to mount a single unit, or two units side by side. Modular power supplies may also be mounted in a variety of rack configurations. With the exception of the modular supplies and some vacuum-tube units, all models come fully encased, suitable for portable or bench use. See Accessory Pages 50 and 51.

STORAGE

Irrespective of their rated operating temperature range, all KEPCO Power Supplies may be stored under ambient temperature conditions that range from -40 degrees C as a lower limit to +85 degrees C for an upper limit. Under conditions of high humidity or condensation, suitable protective measures should be taken (vapor proof seals, etc.). If prolonged storage or operation under high moisture conditions is anticipated, Power Supplies can be ordered with full moisture and fungus proofing varnish (MFP) applied to all exposed and unprotected surfaces.

REMOTE VIX SIGNALING

VIX equipped power supplies are provided with a pair of rear panel pin jacks which make available the mode indicating signal for external use. The mode indicating voltage is a two condition signal: the "V" terminal is 8 volts positive with respect to the "I" terminal during voltage regulated operation and the "I" terminal is 8 volts positive with respect to the "V" terminal during current regulated operation. Polarity reversal occurs abruptly at the crossover point. The VIX control signal delivers up to 0.8 milliamperes, which is adequate to activate a sensitive relay through a single transistor amplifier. Figure 1 shows a typical circuit controlling a SPDT relay, whose contacts can operate remote indicators or machinery control equipment. Model VIX-1C is available as an accessory to actuate a SPDT relay on VIX command. See Page 47.

For given power supply output settings of Vx and Ix, the VIX signal polarity reversal occurs when the load resistance goes through the crossover point. The VIX control signal delivers up to 0.8 milliamperes, which is adequate to activate a sensitive relay through a single transistor amplifier.

SERIES AND PARALLEL OPERATION OF VIX EQUIPPED POWER SUPPLIES

Power supplies equipped with VIX (voltage/current crossover mode indicators) are uniquely adapted to operate in series or parallel configurations without auxiliary or slaving connections. A VIX equipped power supply can be paralleled with a similar VIX powered supply by simply connecting them in parallel. Series connection is equally simple, requiring only a pair of auxiliary shunt diodes across the output of each supply. The VIX lights, by indicating the operating mode of each supply, gives continuous information concerning the voltage/current characteristic of the load.
VIX NOMOGRAPh

Automatic Crossover Voltage/Current Regulated Power Supplies provide either a predetermined settable voltage or a predetermined settable current depending on these settings and the load resistance connected to the power supply. The nomograph represents graphically the relationship \(R = \frac{E}{I} \) particularly adapted to voltage/current regulated power supply calculations.

\[
R (\text{OHMS}) = \frac{E \times \text{SCALE FACTOR}}{I \times \text{SCALE FACTOR}}
\]

Uses of VIX Nomograph:

1. Express voltage as a whole number between 1 and 10 with a multiplier (scale factor); 400 volts = 4 \(\times \) 100. Locate on E scale and project along the horizontal line.
2. Express current as a whole number between 1 and 10 with a multiplier (scale factor); 0.5 amperes = 5 \(\times \) 1/10. Locate on I scale and project along vertical line.
3. The intersection of the E scale projection with the I scale projection is the automatic cross-over point.
4. Determine voltage or current mode by intersection between line drawn between origin and load resistance and the programmed voltage and current.

Example:

\[
E = 400 = 4 \times 100 \\
I = 0.5 = 5 \times \frac{1}{10} \\
R = \frac{E}{I} = \frac{4 \times 100}{5 \times \frac{1}{10}} \\
R = 800
\]
Programmable Voltage/Current Models

Automatic Voltage/Current Crossover (Internal Sensing)

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Range (Volts)</th>
<th>Current Range (Amps)</th>
<th>% Load* Regulation</th>
<th>Constant Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK 2–8M</td>
<td>0–2</td>
<td>0.016–8</td>
<td>0.01</td>
<td>0.01 or 0.02ma</td>
</tr>
<tr>
<td>CK 8–5M</td>
<td>0–8</td>
<td>0.010–5</td>
<td>0.01</td>
<td>0.01 or 0.02ma</td>
</tr>
<tr>
<td>CK 18–3M</td>
<td>0–18</td>
<td>0.006–3</td>
<td>0.01</td>
<td>0.01 or 0.02ma</td>
</tr>
<tr>
<td>CK 36–15M</td>
<td>0–36</td>
<td>0.003–1.5</td>
<td>0.01</td>
<td>0.01 or 0.02ma</td>
</tr>
<tr>
<td>CK 40–0.8M</td>
<td>0–40</td>
<td>0.0016–0.8</td>
<td>0.01</td>
<td>0.01 or 0.02ma</td>
</tr>
<tr>
<td>CK 60–0.5M</td>
<td>0–60</td>
<td>0.001–0.5</td>
<td>0.01</td>
<td>0.01 or 0.02ma</td>
</tr>
<tr>
<td>KS 8–15M</td>
<td>0–8</td>
<td>0.075–15</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KS 8–25M</td>
<td>0–8</td>
<td>0.125–25</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KS 18–50M</td>
<td>0–18</td>
<td>0.015–50</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KS 36–15M</td>
<td>0–36</td>
<td>0.015–15</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KS 36–30M</td>
<td>0–36</td>
<td>0.030–30</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KS 60–2M</td>
<td>0–60</td>
<td>0.01–2</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KS 60–5M</td>
<td>0–60</td>
<td>0.025–5</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KS 90–10M</td>
<td>0–90</td>
<td>0.1–10</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KS 60–20M</td>
<td>0–60</td>
<td>0.1–20</td>
<td>0.01</td>
<td>0.01 or 1ma</td>
</tr>
<tr>
<td>KO 12–100M</td>
<td>0–12</td>
<td>10–100</td>
<td>1</td>
<td>2 or 200ma</td>
</tr>
<tr>
<td>KO 25–50M</td>
<td>0–25</td>
<td>5–50</td>
<td>1</td>
<td>2 or 200ma</td>
</tr>
<tr>
<td>KO 45–30M</td>
<td>0–45</td>
<td>3–30</td>
<td>1</td>
<td>2 or 200ma</td>
</tr>
<tr>
<td>KO 120–70M</td>
<td>0–120</td>
<td>70–70</td>
<td>2 or 200ma</td>
<td></td>
</tr>
</tbody>
</table>

*Whichever is greater.

Externally Sensed Constant Current

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Range (Volts)</th>
<th>Current Range (Amps)</th>
<th>% Load* Regulation Constant Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC 2–1M</td>
<td>0–2</td>
<td>0.001–1</td>
<td>0.5</td>
</tr>
<tr>
<td>ABC 7.5–2M</td>
<td>0–15</td>
<td>0.001–2</td>
<td>0.5</td>
</tr>
<tr>
<td>ABC 10–0.75M</td>
<td>0–10</td>
<td>0.001–0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>ABC 15–1M</td>
<td>0–15</td>
<td>0.001–1</td>
<td>0.5</td>
</tr>
<tr>
<td>ABC 15–0.5M</td>
<td>0–9</td>
<td>0.001–0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ABC 200M</td>
<td>0–200</td>
<td>0.001–0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>ABC 425M</td>
<td>0–425</td>
<td>0.001–0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>ABC 1000M</td>
<td>0–1000</td>
<td>0.001–0.02</td>
<td>0.1</td>
</tr>
<tr>
<td>ABC 1500M</td>
<td>0–1500</td>
<td>0.001–0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>ABC 2500M</td>
<td>0–2500</td>
<td>0.001–0.002</td>
<td>0.1</td>
</tr>
<tr>
<td>HB–2AM</td>
<td>0–325</td>
<td>0.01–0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>HB–4AM</td>
<td>0–525</td>
<td>0.01–0.4</td>
<td>0.01</td>
</tr>
<tr>
<td>HB–8AM</td>
<td>0–125</td>
<td>0.01–0.6</td>
<td>0.01</td>
</tr>
<tr>
<td>HB–125M</td>
<td>0–225</td>
<td>0.01–1.0</td>
<td>0.01</td>
</tr>
<tr>
<td>HB–525M</td>
<td>0–525</td>
<td>0.01–0.5</td>
<td>0.01</td>
</tr>
<tr>
<td>SC–18–1M</td>
<td>0–18</td>
<td>0.001–1</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–18–2M</td>
<td>0–18</td>
<td>0.001–2</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–18–4M</td>
<td>0–18</td>
<td>0.001–4</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–33–5M</td>
<td>0–33</td>
<td>0.001–5</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–36–1M</td>
<td>0–36</td>
<td>0.001–1</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–36–2M</td>
<td>0–36</td>
<td>0.001–2</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–36–72</td>
<td>36–72</td>
<td>0.001–0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–3672–0.5M</td>
<td>36–72</td>
<td>0.001–0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–3672–1M</td>
<td>36–72</td>
<td>0.001–1</td>
<td>0.2</td>
</tr>
<tr>
<td>SC–3672–M</td>
<td>36–72</td>
<td>0.001–1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

*For voltage compliance versus output current consult derating graph on Page 23.

*For detailed regulation specifications refer to the individual model specification page.
NOMOGRAPH OF VOLTAGE DROP ACROSS LOAD SUPPLY LEADS
(as a function of wire size and load current)

THIS NOMOGRAPH CAN BE USED TO FIND:

Maximum current carrying capacity recommended for any standard wire size. *

1) With a straight edge, connect the wire size on Scale 2 to the point "A" on Scale 3.
2) Read I_{\text{max}} on Scale 1.

Voltage drop in millivolts per foot for known wire size and operating current.

1) With a straight edge, connect the known current on Scale 1 and the wire size on Scale 2.
2) Read voltage drop on Scale 3.

Wire size required for known operating current and known maximum tolerable voltage drop across supply leads.

1) Determine maximum tolerable drop in millivolts per foot of lead (sum of positive and negative leads);
2) Connect the value on Scale 3 (as determined in step 1) to the known current on Scale 1.
3) Read wire size on Scale 2.

*Assumed on an arbitrary minimum 500 circular mils per amper. High-temperature class insulation will safely allow higher currents.

NOTE: A voltage regulated Power Supply controls the voltage across its output terminals. Hence the wire conductors used to connect the load must be considered as part of the load.
At high load currents the voltage drop across the supply leads may appreciably degrade regulation at the load. Kepco models equipped with the remote error sensing feature can automatically compensate for voltage drops of up to 500 mv across each load supply lead.
SPECIFICATIONS, Voltage Regulation Mode

REGULATION: Line: Less than 0.05% or 1 mv output voltage change for 105-125V AC or 210-250V AC line variation, at any output voltage within the specified range.
Load: Less than 0.05% or 1 mv output voltage change, whichever is greater for no load to full load change at any output voltage within the specified range.

STABILITY: Output voltage varies less than 0.05% or 3 mv, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output voltage changes less than 0.005% per °C.

RIPPLE: Less than 0.25 mv rms.

RECOVERY TIME: 50 microseconds.

OUTPUT IMPEDANCE: Specified for each model within the load frequency range shown in the table. Above 10 kc include the reactive impedance of the effective series inductance as indicated.

SPECIFICATIONS, Current Regulation Mode

External Sensing

OUTPUT RANGE: Current regulation from 1 ma to 100% of the maximum rated current.

COMPLIANCE: Voltage compliance range is zero to 100% of the maximum output voltage. For any selected current value, the output voltage is automatically varied throughout the compliance range as required to regulate the output current through a variable load.

REGULATION: Line: For 105-125V AC or 210-250V AC line variations, output current changes less than 0.1% when the specified voltage sample is maintained across the external sensing resistor.
Load: For the maximum change in load resistance, within the rated compliance range, output current changes less than 0.5% when the specified voltage sample is maintained across the external sensing resistor.
The sensing resistor is chosen to produce a one volt drop at the maximum operating current. A separate control is used externally to provide high resolution current adjustability.

STABILITY: Output current varies less than 0.1% or 1 ma, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output current changes less than 0.1% per °C.

RIPPLE: Less than 0.1% of maximum current, rms.

SPECIFICATIONS, General

INPUT REQUIREMENTS: 105-125 or 210-250V AC, 50-440 cps single phase.

AMBIENT OPERATING TEMPERATURE: -20°C to +50°C maximum.

STORAGE TEMPERATURE: -40°C to +85°C maximum.
ISOLATION VOLTAGE: A maximum of 500 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Performance

CONTROLS: Continuously adjustable 10-turn voltage control permits output settings from zero to the maximum voltage. Resolution: 0.05% of maximum output.

PROGRAMMING: Special terminals provide for remote resistive programming of voltage or current at 1000 ohms per volt. Programming terminals are also provided for programming by means of remotely located voltage or current signals.

CURRENT LIMIT CONTROL: A single turn control provides adjustable current limiting from 20% to 150% of rated full-load current.

SHORT CIRCUIT PROTECTION: Unique current limiting circuitry permits continuous operation into a short circuit without the aid of fuses, circuit breakers or relays. Output returns instantly to the operating voltage when the overload is removed.

REMOTE ERROR SENSING: Error sensing terminals enable specified voltage regulation to be maintained directly at the load by compensating for voltage drops up to 0.5 volts across each load supply lead.

SERIES/PARALLEL OPERATION: Current limiting capability permits series or parallel operation. In parallel, units operate automatically to share a load by means of the current limiting feature.

COOLING: Heat removal is by natural convection, without blowers.

NO VOLTAGE OVERSHEET: No output voltage overshoot from turn on, turn off or power failure.

SPECIFICATIONS, Physical

METERS: Model numbers in table include 2½” combination voltmeter, ammeter; 2½% full scale accuracy. To specify an unmetered unit, delete the suffix “M” from the model no., e.g., ABC 40-0.5, for unit without meters.

ON FRONT PANEL: DC output and ground (5-way) terminals, 10-turn voltage control, short circuit current adjusting control, AC on-off switch, pilot light and fuse. Volt/amp meter and meter selector switch provided on metered units.

On Rear of Chassis: Barrier strip terminations are provided for DC output and ground connections, resistive or voltage programming, and remote error sensing. Access is provided for the voltage calibration control. Output terminals are isolated from the chassis, either positive or negative terminal may be grounded.

DIMENSIONS: 4½” H x 8½” W. See outline drawing for the depth dimensions of each model.

STANDARD FINISH: Panel etched aluminum — brushed and coated. Case, gray hammertone (special finishes to order).

RACK MOUNTING: Rack mounting adapters (5⅛” high x 19” wide) available for single or dual rack mounting:
Model RA-5 for mounting single unit.
Model RA-4 for mounting two units side by side.

See Accessory Page 51 for outline dimensional drawings of rack adapters.

ABC 40-0.5M
ABC 15-1M
ABC 7.5-2M

TYPICAL ASSEMBLY IN MODEL RA-4 RACK ADAPTER
TYPICAL ASSEMBLY IN MODEL RA-5 RACK ADAPTER
TYPICAL REAR VIEW SHOWING ACCESSIBLE TERMINAL BLOCK WITH SIMPLIFIED CONNECTION GUIDE.
0.05% REGULATION and STABILITY

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC OUTPUT RANGE</th>
<th>RIPPLE RMS</th>
<th>OUTPUT IMPEDANCE</th>
<th>MAX. INPUT AMPS</th>
<th>DC to 100 CPS</th>
<th>100 CPS to 1000</th>
<th>1000 CPS to 10 KC</th>
<th>10 KC to 100 KC</th>
<th>RANGE</th>
<th>VOLTS</th>
<th>MA.</th>
<th>MV</th>
<th>OHMS MAX.</th>
<th>AT 125 V AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC 200M</td>
<td>0–200</td>
<td>0–100</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>20</td>
<td>2.0</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>ABC 425M</td>
<td>0–425</td>
<td>0–50</td>
<td>0.5</td>
<td>4</td>
<td>0.5</td>
<td>0.5</td>
<td>20</td>
<td>2.0</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>ABC 1000M</td>
<td>0–1000</td>
<td>0–20</td>
<td>1.0</td>
<td>25</td>
<td>1.0</td>
<td>1.0</td>
<td>20</td>
<td>10.0</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>ABC 1500M</td>
<td>0–1500</td>
<td>0–10</td>
<td>1.0</td>
<td>75</td>
<td>1.0</td>
<td>1.0</td>
<td>20</td>
<td>10.0</td>
<td>0.3</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>ABC 2500M</td>
<td>0–2500</td>
<td>0–2</td>
<td>1.0</td>
<td>625</td>
<td>1.0</td>
<td>20</td>
<td>2.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>20</td>
<td>2.0</td>
</tr>
</tbody>
</table>

All models are designed for continuous operation without de-rating under all specified line, load and temperature conditions.

9½" FOR ALL MODELS EXCEPT 13½" FOR MODEL ABC 2500M

5¼" RACK ADAPTER

9.3" FOR ALL MODELS EXCEPT 13" FOR MODEL ABC 2500M

Data subject to change without notice
PATENT NOTICE: Applicable Patent Nos. will be supplied on request.

SPECIFICATIONS, Voltage Regulation Mode

REGULATION: Line: Less than 0.05% or 5 mv output voltage change, whichever is greater, for 105-125V AC or 210-250V AC line variation, at any output voltage within the specified range.

Load: Less than 0.05% or 5 mv output voltage change, whichever is greater, for no load to full load change at any output voltage within the specified range.

STABILITY: Output voltage varies less than 0.05% or 50 mv, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output voltage changes less than 0.05% per °C.

RIPPLE: See table for maximum specification applicable to each model.

RECOVERY TIME: 50 microseconds.

OUTPUT IMPEDANCE: Specified for each model within the load frequency range shown in the table. Above 10 kc include the reactive impedance of the effective series inductance as indicated.

SPECIFICATIONS, Current Regulation Mode

External Sensing

OUTPUT RANGE: Current regulation from 1 ma to 100% of the maximum rated current.

COMPLIANCE: Voltage compliance range is zero to 100% of the maximum output voltage.

For any selected current value, the output voltage is automatically varied throughout the compliance range as required to regulate the output current through a variable load.

REGULATION: Line: For 105-125V AC or 210-250V AC line variations, output current changes less than 0.1% when the specified voltage sample is maintained across the external sensing resistor.

Load: For the maximum change in load resistance, within the rated compliance range, output current changes less than 0.1% when the specified voltage sample is maintained across the external sensing resistor.

The sensing resistor is chosen to produce a 10 volt drop at the maximum operating current. A separate control is used externally to provide high resolution current adjustability.

STABILITY: Output current varies less than 0.1% or 10µA, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output current changes less than 0.1% per °C.

RIPPLE: Less than 0.1% of maximum current, rms.

SPECIFICATIONS, General

INPUT REQUIREMENTS: 105-125 or 210-250V AC, 50-440 cps single phase.

AMBIENT OPERATING TEMPERATURE: -20°C to +55°C maximum.

STORAGE TEMPERATURE: -40°C to +85°C maximum.

ISOLATION VOLTAGE: A maximum of 1000 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Performance

CONTROLS: Continuously adjustable voltage control permits output settings from zero to the maximum voltage. The
voltage control on Models ABC 200M and ABC 425M is a single 10-turn control; resolution: 0.005% of maximum output. The voltage control for Models ABC 1000M, ABC 1500M and ABC 2500M consists of a 10-position step switch with a 10-turn control interpolating between switch positions; resolution: 0.005% of maximum output.

PROGRAMMING: Special terminals provide for remote resistive programming of voltage or current at 1000 ohms per volt. Programming terminals are also provided for programming by means of remotely located voltage or current signals.

CURRENT LIMIT CONTROL: A single control provides adjustable current limiting from 25% to 150% of rated full-load current on Models ABC 200M and ABC 425M. Fixed current limiting, set to approximately 150% of rated maximum current is provided on Models ABC 1000M, ABC 1500M and ABC 2500M.

SHORT CIRCUIT PROTECTION: Unique current limiting circuitry permits continuous operation into a short circuit without the aid of fuses, circuit breakers or relays. Output returns instantly to the operating voltage when the overload is removed.

SERIES/PARALLEL OPERATION: Current limiting capability permits series or parallel operation. In parallel, units operate automatically to share a load by means of the current limiting feature. Series operation is limited to the 1000 volts of isolation.

HYBRID CIRCUIT: Unique design achieves high efficiency and reliability by using transistorized reference and amplification circuits for optimum regulation, stability and long life. Vacuum tubes are used for series pass elements for reliable high voltage operation.

COOLING: Heat removal is by natural convection.

NO VOLTAGE OVERSHOOT: No output voltage overshoot from turn on, turn off or power failure.

SPECIFICATIONS, Physical

METERS: Model numbers in table include 2½" combination voltmeter, ammeter; 2% full scale accuracy. To specify an unmetered unit, delete the suffix "M" from the model no., e.g., ABC 200, for unit without meters. Models ABC 1000M, ABC 1500M and ABC 2500M include a voltmeter only.

TERMINALS AND CONTROLS: On Front Panel: DC output and ground (5-way) terminals. DC voltage control, AC on-off switch, pilot light and fuse. A volt/amp meter, meter selector switch and short circuit current adjusting control are provided on all models except ABC 1000M, ABC 1500M and ABC 2500M which contain a voltmeter only, plus the 10-position voltage step switch.

On Rear of Chassis: Barrier strip terminations are provided for DC output and ground connections, resistive or voltage programming and current regulator connections. Access is provided for the voltage calibration control. Output terminals are isolated from the chassis, either positive or negative terminal may be grounded.

DIMENSIONS: 4½" H x 8¾" W. See outline drawing for the depth dimensions of each model.

STANDARD FINISH: Panel, etched aluminum — brushed and coated. Case, gray hammertone (special finishes to order).

RACK MOUNTING: Rack mounting adapters (5½" high x 19" wide) available for single or dual rack mounting: Model RA-5 for mounting single unit. Model RA-4 for mounting two units side by side.

See Accessory Page 51 for outline dimensional drawings of rack adapters.
SPECIFICATIONS, Voltage Regulation Mode

REGULATION: Line: Less than 0.01% output voltage change for 105-125V AC or 210-250V AC line variation, at any output voltage within the specified range. Load: Less than 0.01% or 0.5 mv output voltage change, whichever is greater, for no load to full load change at any output voltage within the specified range. The 0.5 mv specification governs throughout the entire range of Model CK 2-0.8.

STABILITY: Output voltage varies less than 0.01% or 2 mv, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load, and ambient temperature.

TEMPERATURE COEFFICIENT: Output voltage changes less than 0.01% per °C.

RIPPLE: Less than 0.5 mv rms.

RECOVERY TIME: 80 microseconds.

OUTPUT IMPEDANCE: Specified for each model within the load frequency range shown in the table. Above 10 kc include the reactive impedance of the effective series inductance as indicated.

SPECIFICATIONS, Current Regulation Mode

OUTPUT RANGE, Internal Sensing: Current regulation from less than 0.2% to 100% of the maximum specified current. Automatic crossover to voltage limiting provided.

External Sensing: Current regulation from 1 ma to 100% of the maximum rated current.

COMPLIANCE, Internal Sensing: Voltage compliance range is zero to the voltage control setting. The setting is adjustable, zero to 100% of the rated voltage range.

External Sensing: Voltage compliance range is zero to 100% of the maximum output voltage.

For any selected current value, the output voltage is automatically varied throughout the compliance range as required to regulate the output current through a variable load.

REGULATION, Internal Sensing: Line: Less than 0.01% or 0.2 ma, whichever is greater, output current change for 105-125V AC or 210-250V AC line variation at any output current within the specified range. For models rated at 2 amperes or less output current, the 0.2 ma regulation specification governs.

Load: Less than 0.01% or 0.2 ma, whichever is greater, output current change for the maximum change in load resistance within the rated compliance range. For models rated at 2 amperes or less output current, the 0.2 ma regulation specification governs.

REGULATION, External Sensing: Line: Less than 0.01% of the specified voltage sample is maintained across the external sensing resistor.

Load: For the maximum change in load resistance, within the rated compliance range, output current changes less than 0.01% when the specified voltage sample is maintained across the external sensing resistor.

STABILITY: Output current varies less than 0.05% or 1 ma, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load, and ambient temperature.

TEMPERATURE COEFFICIENT: Output current changes less than 0.05% per °C.

RIPPLE: Less than 0.05% of output current setting or 0.01% of maximum current rating, whichever is greater, rms.

SPECSIFICATIONS, General

INPUT REQUIREMENTS: 105-125V or 210-250V AC, 50-65 cps single phase. Units available for 400 cps input on special order.

AMBIENT OPERATING TEMPERATURE: -20°C to +50°C max.

STORAGE TEMPERATURE: -40°C to +85°C maximum.

ISOLATION VOLTAGE: A maximum of 500 volts can be connected between the chassis and either output terminal.
SPECIFICATIONS, Performance

CONTROLS: Continuously adjustable 10-turn voltage and current controls permit output settings from zero to the maximum voltage and current. Resolution: 0.05% of maximum output.

PROGRAMMING: Special terminals provide for remote resistive programming of voltage or current at 1000 ohms per volt. Programming terminals are also provided for programming by means of remotely located voltage or current signals.

AUTOMATIC CROSSOVER: The automatic crossover circuit switches the operating mode of the power supply automatically from constant voltage to constant current or vice versa depending on the load relationship to the panel voltage and current adjustments. In the voltage regulation mode, the current control serves as a current limit adjustment while in current regulating mode, the voltage control serves as a voltage limiting adjustment.

VIX INDICATORS: The power supply's operating mode is indicated by a pair of front-panel signal lamps. One lamp is lighted during voltage regulated operation, the other during current regulated operation (internal current sensing only). Crossover from one mode to the other is signalled by the extinction of one lamp and the lighting of the other.

VIX REMOTE SIGNAL: A pair of rear-panel pin jacks, labelled "V" and "I" provide external access to the VIX signal. Pin V is 8 volts positive with respect to pin I during voltage regulated operation. Pin I is 8 volts positive with respect to Pin V during current regulated operation. Maximum loading: 10 K ohms; isolated from ground and the output terminals of the power supply.

Crossover from one mode to the other is signalled by an abrupt polarity reversal.

REMOTE ERROR SENSING: Error sensing terminals enable specified voltage regulation to be maintained directly at the load by compensating for voltage drops up to 0.5 volts across each load supply lead.

SERIES/PARALLEL OPERATION: Automatic crossover capability permits series or parallel operation in either voltage or current regulating modes. Units operate automatically to share a load by means of their automatic crossover feature. Connections are also provided for operation in master/slave configuration.

COOLING: Lateral circulation by blowers insures efficient heat transfer; permits stacking of multiple units without overheating.

NO VOLTAGE OVERSHOOT: No output voltage overshoot from turn on, turn off or power failure.

SPECIFICATIONS, Physical

METERS: Model numbers in table include 2½" rectangular voltmeter and ammeter; 2½% full scale accuracy. To specify an unmetered unit, delete the suffix "M" from the model no. e.g., CK 18-3, for unit without meters.

TERMINALS AND CONTROLS: On Front Panel: AC on-off switch, fuse and two VIX mode lamps, 10-turn voltage control, 10-turn current control, DC output and ground (5-way) terminals.

On Rear of Chassis: Two VIX remote signal 0.08" pin jacks. Barrier strip connections for DC output and ground terminals, remote error sensing, voltage and current programming by remote resistance and/or voltage, master-slave parallel operation, external current sensing. Output terminals are isolated from the chassis, either positive or negative terminal may be grounded.

DIMENSIONS: 4½"H x 8¾"W x 13"D (behind rack adapter) 13¾"D overall.

FINISH: Panel, etched aluminum — brushed and coated. Case, gray hammertone (special finishes to order).

MOUNTING: Rack mounting adapters (5¼" high x 19" wide) available for single or dual rack mounting:
Model RA 5 for mounting single unit.
Model RA 4 for mounting two units side by side.
See Accessory Page 51 for outline dimensional drawings of rack adapters.
SPECIFICATIONS, Voltage Regulation Mode

REGULATION: Line: Less than 0.01% output voltage change for 105-125V AC line variation, at any output voltage within the specified range.

Load: Less than 0.01% or 2 mv output voltage change, whichever is greater, for no load to full load change at any output voltage within the specified range.

STABILITY: Output voltage varies less than 0.01% or 2 mv, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output voltage changes less than 0.01% per °C.

RIPPLE: Less than 1 millivolt, rms.

RECOVERY TIME: 50 microseconds.

OUTPUT IMPEDANCE: Specified for each model within the load frequency range shown in the table. Above 10 kc include the reactive impedance of the effective series inductance as indicated.

SPECIFICATIONS, Current Regulation Mode

External Sensing

OUTPUT RANGE: Current regulation from 10 ma to 100% of the maximum rated current.

COMPLIANCE: Voltage compliance equals the span of one band switch position anywhere in the range from zero to 100% of the maximum output voltage.

For any selected current value, the output voltage is automatically varied throughout the compliance range as required to regulate the output current through a variable load. The compliance voltage range can be increased to the full output voltage range when the output current is derated in accordance with the load current derating graph. The range switch sets the maximum voltage; should the load require an output voltage below the lower limit of the selected band, output current must be derated in accordance with the graph.

REGULATION: Line: For 105-125V AC line variations, output current changes less than 0.01% when the specified voltage sample is maintained across the external sensing resistor.

Load: For the maximum change in load resistance, within the rated compliance range, output current changes less than 0.01% when the specified voltage sample is maintained across the external sensing resistor. The sensing resistor is chosen to produce a 10 volt drop at the maximum operating current. A separate control is used externally to provide high resolution current adjustability.

STABILITY: Output current varies less than 0.05% or 0.2 ma, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output current changes less than 0.05% per °C.

RIPPLE: Less than 0.01% of maximum current, rms.

SPECIFICATIONS, General

INPUT REQUIREMENTS: 105-125V AC, 50-440 cps single phase.
AMBIENT OPERATING TEMPERATURE: -20°C to +55°C maximum.

STORAGE TEMPERATURE: -40°C to +85°C maximum.

ISOLATION VOLTAGE: A maximum of 600 volts can be connected between the chassis and either output terminal.

AC OUTPUT: Two 6.5V AC outputs, unregulated at 6 amperes each. Series for 13V AC-CT., at 6 amperes; parallel for 6.5V AC at 12 amperes.

SPECIFICATIONS, Performance

VOLTAGE RANGE SWITCH: Provides step output settings in five discrete voltage bands. The range switch divides the output into five approximately equal segments.

FINE CONTROL: A 10-turn control interpolates between steps of the band switch. Resolution: 0.02% of maximum output voltage.

PROGRAMMING: Special terminals provide for remote resistive programming of voltage or current at 100 ohms per volt.

REMOTE ERROR SENSING: Model HB 225M and Model HB 525M include remote sensing terminals to enable the specified voltage regulation to be maintained directly at the load by compensating for voltage drops up to 0.5 volts across each load supply lead.

HYBRID CIRCUIT: Unique design achieves high efficiency and reliability by using transistorized reference and amplification circuits for optimum regulation, stability and long life. Vacuum tubes are used for series pass elements for reliable high voltage operation.

COOLING: Heat removal is by natural convection. Pass tubes are physically remote from the sensitive comparison amplifier and are exposed at the rear for efficient heat transfer.

NO VOLTAGE OVERSHOOT: No output voltage overshoot from turn on, turn off or power failure.

SPECIFICATIONS, Physical

METERS: Model numbers in table include 2½" rectangular voltmeter and ammeter; 2% full scale accuracy. To specify an unmetered unit, delete the suffix "M" from the model no., e.g., HB 2A, for unit without meters.

TERMINALS AND CONTROLS: On Front Panel: DC output and ground (5-way terminals), 5-position range switch and fine control (slooted shafts with locking devices), AC on-off switch, fuse and pilot light, DC on-off switch, fuse and pilot light.

On Rear of Chassis: Multi-terminal barrier strip contains DC output and ground, remote DC on-off, remote voltage control, program to zero and current regulator connections. Models HB 225M and HB 525M have remote error sensing terminals and provision for programming by means of remote voltage or current signals. All units have two 6.5V AC output terminals rated 6 amperes each. All output terminals are isolated from the chassis, either positive or negative output may be grounded.

DIMENSIONS: Standard EIA rack dimensions, 3½" H x 19" W x 14½" D (behind front panel).

STANDARD FINISH: Gray hammertone (special finishes to order).

131·38 SANFORD AVENUE • FLUSHING, N.Y. 11352 • Phone: (212) 1-7000
TWX #212·539·6623 • Cable Address: KEPPOWER, NEWYORK

LOAD CURRENT DERATING GRAPH

This graph is provided to help compute the over-ranging capabilities of HB Power Supplies when externally programmed outside of the normal range of the voltage band switch. The graph is particularly useful for determining the voltage compliance range of the power supplies in their constant current mode of operation. To use the graph, plot the desired current as a horizontal line; the intercept that this line makes with each numbered locus defines the minimum output voltage permissible for that particular range switch position. For example, with Model HB 4AM operating in current regulator mode at 60% of rated current, the voltage compliance limits are 30% to 80% when the voltage range switch is in position (4). This corresponds to operation at 240 ma in band position 4 with 160 volts of compliance between 100 V DC and 260 V DC.
Icepcc»
R:REDU-D-C-;~;y
GROUP
• automatic voltage/current crossover
• full range programming
• high current
• 10-turn voltage and current controls

1% REGULATION and STABILITY

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC OUTPUT RANGE</th>
<th>RIPPLE RMS</th>
<th>OUTPUT IMPEDANCE OHMS MAX.</th>
<th>MAX. INPUT AMPS</th>
<th>MAX. INPUT WATTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO 12-100M</td>
<td>0-12 0-100</td>
<td>0.5 or 30</td>
<td>0.02 0.04-0.5</td>
<td>24</td>
<td>1800</td>
</tr>
<tr>
<td>KO 25-50M</td>
<td>0-25 0-50</td>
<td>0.5 or 40</td>
<td>0.02 0.04-0.5</td>
<td>24</td>
<td>1800</td>
</tr>
<tr>
<td>KO 45-30M</td>
<td>0-45 0-30</td>
<td>0.3 or 20</td>
<td>0.02 0.04-0.5</td>
<td>24</td>
<td>1800</td>
</tr>
<tr>
<td>KO 70-20M</td>
<td>0-70 0-20</td>
<td>0.3 or 30</td>
<td>0.02 0.04-0.5</td>
<td>24</td>
<td>1800</td>
</tr>
</tbody>
</table>

SPECIFICATIONS, Voltage Regulation Mode

REGULATION: Line: Less than 1% output voltage change for 105-125V AC or 210-250V AC line variation, at any output voltage within the specified range.
Load: Less than 1% or 20 mv output voltage change, whichever is greater, for no load to full load change at any output voltage within the specified range.

STABILITY: Output voltage varies less than 1% or 50 mv, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output voltage changes less than 0.1% per °C.

RIPPLE: See table for maximum specification applicable to each model.

RECOVERY TIME: 500 milliseconds for 0-100% step load-on change or 100%-10% step load-off change.

OUTPUT IMPEDANCE: Specified for each model within the load frequency range shown in the table. Below 1000 cps, impedance is a function of load current and is determined by reference to the load regulation specification. Impedance is the slope ΔE/ΔI. Above 10 kc include the reactive impedance of the effective series inductance as indicated.

SPECIFICATIONS, Current Regulation Mode

Internal Sensing

OUTPUT RANGE: Current regulation from less than 10% to 100% of the maximum specified current. Automatic crossover to voltage limiting provided.

COMPLIANCE: Voltage compliance range is zero to the voltage control setting. The setting is adjustable, zero to 100% of the rated voltage range.
For any selected current value, the output voltage is automatically varied throughout the compliance range as required to regulate the output current through a variable load.

REGULATION: Line: Less than 2% or 200 ma, whichever is greater, output current change for 105-125V AC or 210-250V AC line variation at any output current within the specified range.
Load: Less than 2% or 200 ma, whichever is greater, output current change for the maximum change in load resistance within the rated compliance range.

STABILITY: Output current varies less than 2% or 200 ma, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output current changes less than 0.5% per °C.

RIPPLE: Less than 0.5% of maximum current, rms.

SPECIFICATIONS, General

INPUT REQUIREMENTS: 105-125 or 210-250V AC, 50-65 cps, single phase. Input taps are also provided for operation from 104 ±9V AC and 208 ±18V AC.

All models are designed for continuous operation without derating under all specified line, load and temperature conditions.

Data subject to change without notice

PATENT NOTICE: Applicable Patent Nos. will be supplied on request.
AMBIENT OPERATING TEMPERATURE: \(-20°C \text{ to } +50°C\) maximum.

STORAGE TEMPERATURE: \(-40°C \text{ to } +85°C\) maximum.

ISOLATION VOLTAGE: A maximum of 500 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Performance

CONTROLS: Continuously adjustable 10-turn voltage and current controls permit output settings from zero to the maximum voltage and current. Resolution: 0.05% of maximum output.

PROGRAMMING: Special terminals provide for remote resistive programming of voltage or current at 100 ohms per volt. Programming terminals are also provided for programming by means of remotely located voltage or current signals.

AUTOMATIC CROSSOVER: The automatic crossover circuit switches the operating mode of the power supply automatically from constant voltage to constant current or vice versa depending on the load relationship to the panel voltage and current adjustments. In the voltage regulation mode, the current control serves as a current limit adjustment while in current regulating mode, the voltage control serves as a voltage limiting adjustment.

REMOTE ERROR SENSING: Error sensing terminals enable specified voltage regulation to be maintained directly at the load by compensating for voltage drops up to 0.5 volts across each load supply lead.

SERIES/PARALLEL OPERATION: Automatic crossover capability permits series or parallel operation in either voltage or current regulating modes. Units operate automatically to share a load by means of their automatic crossover feature. Connections are also provided for operation in master/slave configuration.

COOLING: Lateral circulation by blowers insures efficient heat transfer; permits stacking of multiple units without overheating.

SPECIFICATIONS, Physical

METERS: Model numbers in table include 2½", rectangular voltmeter and ammeter; 5% full scale accuracy. To specify an unmetered unit, delete the suffix "M" from the model no., e.g., KO 70-20, for unit without meters.

TERMINALS AND CONTROLS: On Front Panel: AC on-off switch, circuit breaker/fuse and pilot light, 10-turn voltage control, 10-turn current control and reference circuit fuse. On Rear of Chassis: Barrier strip connections for: remote error sensing, voltage and current programming by remote resistance and/or voltage, master-slave parallel operation. DC output and ground terminals. Output terminals are isolated from the chassis, either positive or negative terminal may be grounded.

DIMENSIONS: Standard EIA rack dimensions, 8½" H x 19" W x 20" D. Side handles and bottom skids easily removable for rack mounting. Depth is measured behind front panel, see diagram.

FINISH: Gray hammertone (special finishes to order).
• narrow voltage range
• systems or laboratory use
• low cost

~ 0.1% REGULATION and STABILITY

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC OUTPUT RANGE VOLTS</th>
<th>M A LOAD</th>
<th>D MAX</th>
<th>REGULATION LOAD %</th>
<th>OUTPUT IMPEDANCE DC to 100 CPS</th>
<th>OHMS MAX 100 CPS to 1 KC</th>
<th>1 KC to 100 KC</th>
<th>+ 10K</th>
<th>AUX. OUTPUT 6.3VAC</th>
<th>AMPLIFIED</th>
<th>OUTPUT IMPEDANCE OHMS MAX.</th>
<th>DIMENSIONS</th>
<th>MAX. INPUT AMPS AT 125 V AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 11M</td>
<td>0–150 0–125</td>
<td>0.15</td>
<td>0.2V</td>
<td>0.25</td>
<td>0.4V</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2±3</td>
<td>Each Supply</td>
<td>7"</td>
<td>19"</td>
<td>11"</td>
<td>2.0</td>
</tr>
<tr>
<td>KR 1M</td>
<td>100–200 0–125</td>
<td>0.1</td>
<td>0.2V</td>
<td>0.20</td>
<td>0.4V</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2±3</td>
<td>has one</td>
<td>7"</td>
<td>19"</td>
<td>7½"</td>
<td>2.0</td>
</tr>
<tr>
<td>KR 2M</td>
<td>195–325 0–125</td>
<td>0.06</td>
<td>0.2V</td>
<td>0.1</td>
<td>0.4V</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2±3</td>
<td>3 Ampere</td>
<td>7"</td>
<td>19"</td>
<td>7½"</td>
<td>2.0</td>
</tr>
<tr>
<td>KR 9M</td>
<td>295–450 0–125</td>
<td>0.04</td>
<td>0.2V</td>
<td>0.1</td>
<td>0.4V</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2±3</td>
<td>Output</td>
<td>7"</td>
<td>19"</td>
<td>7½"</td>
<td>2.0</td>
</tr>
<tr>
<td>KR 12M</td>
<td>0–150 0–300</td>
<td>0.15</td>
<td>0.2V</td>
<td>0.25</td>
<td>0.4V</td>
<td>0.2</td>
<td>0.06</td>
<td>0.2±5</td>
<td>Each Supply</td>
<td>7"</td>
<td>19"</td>
<td>11"</td>
<td>3.5</td>
</tr>
<tr>
<td>KR 3M</td>
<td>100–200 0–300</td>
<td>0.1</td>
<td>0.2V</td>
<td>0.20</td>
<td>0.4V</td>
<td>0.2</td>
<td>0.06</td>
<td>0.2±5</td>
<td>has two</td>
<td>7"</td>
<td>19"</td>
<td>11"</td>
<td>3.0</td>
</tr>
<tr>
<td>KR 4M</td>
<td>195–325 0–300</td>
<td>0.06</td>
<td>0.2V</td>
<td>0.1</td>
<td>0.4V</td>
<td>0.2</td>
<td>0.06</td>
<td>0.2±5</td>
<td>5 Ampere</td>
<td>7"</td>
<td>19"</td>
<td>11"</td>
<td>4.0</td>
</tr>
<tr>
<td>KR 10M</td>
<td>295–450 0–300</td>
<td>0.04</td>
<td>0.2V</td>
<td>0.1</td>
<td>0.4V</td>
<td>0.2</td>
<td>0.06</td>
<td>0.2±5</td>
<td>Outputs</td>
<td>7"</td>
<td>19"</td>
<td>11"</td>
<td>4.0</td>
</tr>
<tr>
<td>KR 8M</td>
<td>0–150 0–600</td>
<td>0.15</td>
<td>0.2V</td>
<td>0.25</td>
<td>0.4V</td>
<td>0.35</td>
<td>0.06</td>
<td>0.2±2</td>
<td>Each Supply</td>
<td>10½"</td>
<td>19"</td>
<td>13"</td>
<td>5.5</td>
</tr>
<tr>
<td>KR 5M</td>
<td>100–200 0–600</td>
<td>0.1</td>
<td>0.2V</td>
<td>0.20</td>
<td>0.4V</td>
<td>0.35</td>
<td>0.06</td>
<td>0.2±2</td>
<td>has two</td>
<td>10½"</td>
<td>19"</td>
<td>13"</td>
<td>5.5</td>
</tr>
<tr>
<td>KR 6M</td>
<td>195–325 0–600</td>
<td>0.06</td>
<td>0.2V</td>
<td>0.1</td>
<td>0.4V</td>
<td>0.35</td>
<td>0.06</td>
<td>0.2±2</td>
<td>10 Ampere</td>
<td>10½"</td>
<td>19"</td>
<td>13"</td>
<td>6.5</td>
</tr>
<tr>
<td>KR 7M</td>
<td>295–450 0–600</td>
<td>0.04</td>
<td>0.2V</td>
<td>0.1</td>
<td>0.4V</td>
<td>0.35</td>
<td>0.06</td>
<td>0.2±2</td>
<td>Outputs</td>
<td>10½"</td>
<td>19"</td>
<td>13"</td>
<td>7.5</td>
</tr>
</tbody>
</table>

REGULATION:
(See table) the regulation of each model is specified as a percentage or minimum absolute change for 105–125V AC line variations and NO LOAD to FULL LOAD change. Percentage values are measured at maximum rated output voltage.

STABILITY:
Output varies less than rated regulation specification over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

RIPPLE:
Less than 3 millivolts rms.

RECOVERY TIME:
50 microseconds.

TEMPERATURE COEFFICIENT:
Output voltage changes less than 0.01% per °C.

AMBIENT OPERATING TEMPERATURE:
-30°C to +55°C maximum.

STORAGE TEMPERATURE:
-40°C to +85°C maximum.

OUTPUT IMPEDANCE:
Specified for each model within the load frequency range shown in the table. Above 10 kc include the reactive impedance of the effective series inductance as indicated.

All models are designed for continuous operation without derating under all specified line, load and temperature conditions.

Data subject to change without notice.

PATENT NOTICE: Applicable Patent Nos. will be supplied on request.
INPUT REQUIREMENTS:
105–125V AC 50–65 cps single phase.

SPECIFICATIONS, Performance

CONTROLS:
Continuously adjustable rear-mounted locking-type voltage control permits output settings anywhere within the rated output voltage range, no switching.

OIL FILLED CAPACITORS:
Provide exceptional reliability.

REMOTE OUTPUT VOLTAGE CONTROL:
Available on special order for all models.

CONVECTION COOLING:
Heat removal is by natural convection, no blowers.

NO VOLTAGE OVERSHOOT:
No output voltage overshoot from turn on, turn off or power failure.

ISOLATION VOLTAGE:
A maximum of 500 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Physical

METERS:
Model numbers in table include voltmeter and ammeter.
To specify an unmetered unit delete the suffix “M” from the model numbers, e.g., KR 1 for unit without meters.

COVER AND HANDLES:
Specially designed enclosure for bench or rack mounting provides protective cover with side handles. Add suffix “C” to the model number, e.g., KR 1MC for meters cover and handles.

TERMINALS AND CONTROLS:
On front panel: AC on-off switch, pilot light and fuse; DC on-off switch, pilot light and fuse.
On rear of chassis: DC output and ground connections; 6.3V AC outputs; voltage control. All output terminals are isolated from the chassis, either positive or negative output may be grounded.

DIMENSIONS:
Standard EIA rack dimensions.
See table for specification of each model. Depth is measured behind front panel.

STANDARD FINISH:
Gray hamnertone (special finishes to order).
SPECIFICATIONS, Voltage Regulation Mode

REGULATION: For models rated at 10 amperes or less output current, the 1 ma regulation specification governs.

Load: Less than 0.01% or 1 ma output current change for the maximum change in load resistance, within the rated compliance range, output current changes less than 0.01% or 1 ma, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output current changes less than 0.01% per °C.

RIPPLE: Less than 1 ma rms.

RECOVERY TIME: 50 microseconds.

OUTPUT IMPEDANCE: Specified for each model within the load frequency range shown in the table. Above 10 ke include the reactive impedance of the effective series inductance as indicated.

SPECIFICATIONS, Current Regulation Mode

REGULATION RANGE, Internal Sensing: Current regulation from less than 0.01% to 100% of the maximum specified current. Automatic crossover to voltage limiting provided.

External Sensing: Current regulation from 10 ma to 100% of the maximum rated current.

COMPLIANCE, Internal Sensing: Voltage compliance range is zero to the voltage control setting. The setting is adjustable, zero to 100% of the rated voltage range.

External Sensing: Voltage compliance range is zero to 100% of the maximum output voltage.

STABILITY: Load current varies less than 0.05% or 5 ma, whichever is greater, over a period of 8 hours after warmup.

TEMPERATURE COEFFICIENT: Output current changes less than 0.01% per °C.

RIPPLE: Less than 1% of output current setting or 0.05% of maximum current rating, whichever is greater, rms.

TYPICAL CHARACTERISTIC AUTOMATIC VOLTAGE/CURRENT CROSSOVER

AMBIENT OPERATING TEMPERATURE: -20°C to +50°C max.
STORAGE TEMPERATURE: -40°C to +85°C maximum.

ISOLATION VOLTAGE: A maximum of 500 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Performance

CONTROLS: Continuously adjustable 10-turn voltage and current controls permit output settings from zero to the maximum voltage and current. Resolution: 0.05% of maximum output.

PROGRAMMING: Special terminals provide for remote resistive programming of voltage or current at 100 ohms per volt. Programming terminals are also provided for programming by means of remotely located voltage or current signals.

AUTOMATIC CROSSOVER: The automatic crossover circuit switches the operating mode of the power supply automatically from constant voltage to constant current or vice versa depending on the load relationship to the panel voltage and current adjustments. In the voltage regulation mode, the current control serves as a current limit adjustment while in current regulating mode, the voltage control serves as a voltage limiting adjustment.

VIX INDICATORS: The power supply's operating mode is indicated by a pair of front-panel signal lamps. One lamp is lighted during voltage regulated operation, the other during current regulated operation (internal current sensing only). Crossover from one mode to the other is signalled by the extinction of one lamp and the lighting of the other.

VIX REMOTE SIGNAL: A pair of rear-panel pin jacks, labelled "V" and "I" provide external access to the VIX signal. Pin V is 8 volts positive with respect to pin I during voltage regulated operation. Pin I is 8 volts positive with respect to pin V during current regulated operation. Maximum loading: 10K ohms; isolated from ground and the output terminals of the power supply. Crossover from one mode to the other is signalled by an abrupt polarity reversal.

REMOTE ERROR SENSING: Error sensing terminals enable specified voltage regulation to be maintained directly at the load by compensating for voltage drops up to 0.5 volts across each load supply lead.

SERIES/PARALLEL OPERATION: Automatic crossover capability permits series or parallel operation in either voltage or current regulating modes. Units operate automatically to share a load by means of their automatic crossover feature. Connections are also provided for operation in master/slave configuration.

COOLING: Lateral circulation by blowers insures efficient heat transfer; permits stacking of multiple units without overheating.

NO VOLTAGE OVERSHOOT: No output voltage overshoot from turn on, turn off or power failure.

SPECIFICATIONS, Physical

METERS: Model numbers in table include 2%", rectangular voltmeter and ammeter; 2% full scale accuracy. To specify an unmetered unit, delete the suffix "M" from the model no., e.g., KS 8-100, for unit without meters.

TERMINALS AND CONTROLS: On Front Panel: AC on-off switch, circuit breaker/fuse and two VIX mode lamps. 10-turn voltage control, 10-turn current control, reference circuit fuse, DC output and ground terminals (8%" models have output terminals on the rear only).

On Rear of Chassis: Two VIX remote signal 0.08" pin jacks. Barrier strip connections for: remote error sensing, voltage and current programming by remote resistance and/or voltage, master-slave, parallel operation, external current sensing, DC output and ground terminals. Output terminals are isolated from the chassis, either positive or negative terminal may be grounded.

DIMENSIONS: Standard EIA rack dimensions. Side handles and bottom slides easily removable for rack mounting (8%" models). See table for dimensions of each model. Depth is measured behind front panel.

FINISH: Gray hammertone (special finishes to order).
SPECIFICATIONS, Voltage Regulation Mode

REGULATION:
- **Line:** Less than 0.05% or 1 mv output voltage change for 105-125V AC or 210-250V AC line variation, at any output voltage within the specified range.
- **Load:** Less than 0.05% or 1 mv output voltage change, whichever is greater, over a period of 8 hours after warmup, measured at constant line voltage, load and ambient temperature. (see “Controls”).

STABILITY:
Output voltage varies less than 0.05% or 3 mv, whichever is greater, over a period of 8 hours after warmup, measured at constant line voltage, load and ambient temperature. (see “Controls”).

TEMPERATURE COEFFICIENT:
Output voltage changes less than 0.05% per °C, (see “Controls”).

RIPPLE:
Less than 0.25 mv rms.

RECOVERY TIME:
50 microseconds.

OUTPUT IMPEDANCE:
Specified for each model within the load frequency range shown in the table. Above 10 kc include the reactive impedance of the effective series inductance as indicated.

SPECIFICATIONS, Current Regulation Mode

External Sensing

OUTPUT RANGE:
Current regulation from 1 ma to 100% of the maximum rated current.

COMPLIANCE:
Voltage compliance range is zero to 100% of the maximum output voltage.

REGULATION:
- **Line:** For 105-125V AC or 210-250V AC line variations, output current changes less than 0.1% when the specified voltage sample is maintained across the external sensing resistor.
- **Load:** For the maximum change in load resistance, within the rated compliance range, output current changes less than 0.1% when the specified voltage sample is maintained across the external sensing resistor. The sensing resistor is chosen to produce a one volt drop at the maximum operating current. A separate control is used externally to provide high resolution current adjustability.

STABILITY:
Output current varies less than 0.1% or 1 ma, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT:
Output current changes less than 0.1% per °C.

RIPPLE:
Less than 0.1% of maximum current rms.

SPECIFICATIONS, General

INPUT REQUIREMENTS:
105-125 or 210-250V AC, 50-440 cps single phase.

AMBIENT OPERATING TEMPERATURE:
-20°C to +50°C maximum.

STORAGE TEMPERATURE:
-40°C to +85°C maximum.

ISOLATION VOLTAGE:
A maximum of 500 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Performance

CONTROLS:
PAX Modules are ordinarily supplied without controls. External fixed or variable programming resistors are used to control the output. Optionally, on special order, a built-in trimmer can be provided for up to 20 volts adjustment range. Stability and temperature coefficient criteria require the use of high quality LT, 20 PPM wire wound elements for programming.

0.05% REGULATION and STABILITY

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DC OUTPUT RANGE VOLTS</th>
<th>DC OUTPUT RANGE AMPS</th>
<th>OUTPUT IMPEDANCE OHMS MAX. 1 KC to 100 CPS</th>
<th>OUTPUT IMPEDANCE OHMS MAX. 100 CPS to 1 KC</th>
<th>OUTPUT IMPEDANCE OHMS MAX. 10 DC to 100 CPS</th>
<th>MAX. INPUT AMPS At 125 V AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAX 7-1</td>
<td>0-7 0-1</td>
<td>0.004 0.02 0.1+1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAX 14-0.75</td>
<td>0-14 0-0.75</td>
<td>0.010 0.02 0.1+1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAX 21-0.5</td>
<td>0-21 0-0.5</td>
<td>0.025 0.02 0.1+1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAX 36-0.3</td>
<td>0-36 0-0.3</td>
<td>0.06 0.02 0.1+1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAX 72-0.15</td>
<td>0-72 0-0.15</td>
<td>0.25 0.02 0.1+1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All models are designed for continuous operation without derating under all specified line, load and temperature conditions.
PROGRAMMING: Terminals provide for resistive programming of voltage or current at approximately 1000 ohms per volt. Programming terminals are also provided for programming by means of remotely located voltage or current signals. Optionally, on special order, a built-in trimmer can be provided to adjust the control ratio over a 10% range so that exact value fixed programming resistances can be used conveniently.

CURRENT LIMIT CONTROL: A single-turn control provides adjustable current limiting from 25% to 150% of rated full-load current.

SHORT CIRCUIT PROTECTION: Unique current limiting circuitry permits continuous operation into a short circuit without the aid of fuses, circuit breakers or relays. Output returns instantly to the operating voltage when the overload is removed.

REMOTE ERROR SENSING: Error sensing terminals enable specified voltage regulation to be maintained directly at the load by compensating for voltage drops up to 0.5 volts across each load supply lead.

SERIES/PARALLEL OPERATION: Current limiting capability permits series or parallel operation. In parallel, units operate automatically to share a load by means of the current limiting feature.

COOLING: Heat removal is by natural convection, without blowers.

NO VOLTAGE OVERSHOOT: No output voltage overshoot from turn on, turn off or power failure.

SPECIFICATIONS, PHYSICAL

TERMINALS AND CONTROLS: On Rear: 11-terminal barrier strip and provision for accepting a 12-terminal printed circuit connector for AC input, DC output, error sensing and programming control functions. Output terminals are isolated from ground and either positive or negative output may be grounded.

DIMENSIONS: 2 1/2" H x 3 1/3" W x 15 1/16" D. Uncased for chassis mounting.

Cased Unit: To specify cased unit, add suffix "C" to model no., e.g., PAX 36-0.3C for module with case.

Cased Dimensions: 2 1/4" H x 4 1/4" W x 13 5/8" D.

Panel Adapter: RAP 6-1: 5 1/4" high x 2 3/4" wide. For mounting 6 cased units in Rack Cabinet RA 6-6 (includes handle and fastener).

Panel Adapter: RAP 7-1: 3 3/4" high x 4 3/4" wide. For mounting 4 cased units in Rack Cabinet RA 7-4 (includes handle and fastener).

Rack Cabinet: RA 6-6: 5 1/4" H x 19" W x 13 3/4" D for mounting six units. RA 7-4: 3 3/4" H x 19" W x 13 3/4" D for mounting four units.

Special back plates with mounted mating connectors for printed circuit board connectors adapt the rack cabinets for plug-in mounting of the PAX units.

RA 6-6BP: for plug-in mounting 6 units in Rack Cabinet RA 6-6.

RA 7-4BP: for plug-in mounting of 4 units in Rack Cabinet RA 7-4.

Rack Adapters: RA 12-1: 3 3/4" high x 19" wide. For mounting a single PAX-C unit. RA 11-6: 5 1/4" high x 19" wide. For end mounting of 6 PAX-C units. RA 13-4: 3 3/4" high x 19" wide. For end mounting of 4 PAX-C units.

See Accessory Page 50 for outline dimensional drawings

STANDARD FINISH: Case and Chassis: Blue anodized aluminum. Panel Adapter: Staked aluminum—brushed and coated (special finishes to order).
SPECIFICATIONS, General

REGULATION:
- **LINE:** Less than ±1% output voltage change for 115V ±10V AC line variation at any output voltage within the load range specified in Figure 4. For models with 3-phase input, line regulation is ±2% for line variations of ±10%.
- **LOAD:** At maximum output voltage: Less than 2% output voltage change for HALF LOAD to FULL LOAD change (except 5% regulation for 15 and 20 volt models).
- Less than 4% output voltage change for QUARTER LOAD to FULL LOAD change (except 8% regulation for 15 and 20 volt models). (See Figures 2 and 4.)

STABILITY:
Output varies less than 1% or 0.1V whichever is greater over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

RIPPLE:
For maximum % ripple at maximum rated output voltage and current, see Figure 1. For typical ripple values at reduced output currents see Figure 3. At lower output voltages the absolute value of the ripple is less than at maximum output voltage.

TEMPERATURE COEFFICIENT:
Output voltage changes less than 0.05% per °C.

AMBIENT OPERATING TEMPERATURE:
-20°C to +55°C maximum.

STORAGE TEMPERATURE:
-40°C to +85°C maximum.

OUTPUT IMPEDANCE:
Specified for each model within the load frequency range shown in the table. Below 1000 cps, impedance is a function of load current and is determined by reference to the load regulation curve. Impedance is the slope of the curve ΔE/ΔI. Above 10 kc include the reactive impedance of the effective series inductance as indicated.

INPUT REQUIREMENTS:
(For all 3/4" high models): 115±10V AC 60 cps ±5% single phase.
(For all 3/4" high models): 208 or 230V AC ±10%, 60 cps ±5% three phase, 3-wire.

Note: % changes in line frequency produce approximately equal % changes in output voltage linearly within stated input frequency tolerances.

SPECIFICATIONS, Performance

CONTROLS:
Continuous variable voltage control permits output settings from 0.2% of maximum voltage to the maximum output voltage. Resolution ±1% of maximum output voltage. On 3/4" high models, the output is variable over two continuous ranges.

Data subject to change without notice. PATENT NOTICE: Applicable Patent Nos. will be supplied on request.
PARALLEL CONNECTION:
Units can be paralleled by adjusting the individual voltage controls to share the load.

CONSTANT VOLTAGE TRANSFORMER:
Flux-O-Tran power transformer delivers regulated square wave voltage to rectifiers, improving rectifier utilization and reducing output ripple.

OVERLOAD PROTECTION:
Special Flux-O-Tran power transformer and DC overload circuit breaker allows output to be shorted without adverse effect.

SILICON RECTIFIERS:
Reliable, efficient, full wave rectification.

CAPACITIVE FILTER:
No series choke, capacitive filtering provides excellent ripple reduction and minimizes transient response characteristics.

FORCED AIR COOLING:
Lateral circulation by blowers insures efficient heat transfer; permits stacking of units without overheating.

NO VOLTAGE OVERSHOOT:
No output voltage overshoot from turn on, turn off or power failure.

ISOLATION VOLTAGE:
A maximum of 600 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Physical

METERS:
Model numbers in table include 2½" voltmeter and ammeter; 2% full scale accuracy. To specify unmetered unit, delete the suffix "M" from the model number, eg., PR 155-4 for unit without meters.

TERMINALS AND CONTROLS:
On Front Panel: 3½" and 7" (single phase) units: DC output and ground (5-way) output terminals, voltage control, AC fuse, DC circuit breaker, pilot light. 7" units have conventional power on-off toggle switch, 3½" units have a combination on-off switch and 2 position range selector. 8½" (3-phase) units: Combination on-off switch - circuit breaker, pilot light and voltage control.

On Rear of Chassis: DC output and ground terminals. All output terminals are isolated from the chassis, either positive or negative output may be grounded.

DIMENSIONS:
Standard EIA rack dimensions. See table for specification of each model. Depth is measured behind front panel. On 8½" models, side handles and bottom skids are easily removable for rack mounting. Heavy duty line cord is mounted at the rear, allow 3" minimum bend radius.

STANDARD FINISH:
Gray hammertone (special finishes to order).
SPECIFICATIONS, General

REGULATION: LINE: Less than ±1% output voltage change for 115±15V AC line variation.

LOAD: See Figure 1 for maximum specification. See Figure 2 for typical load regulation curves.

ACCURACY: ±2% of specified output voltage at nominal line, full load and 30°C ambient temperature.

STABILITY: Output varies less than 1% or 0.1V whichever is greater over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

TEMPERATURE COEFFICIENT: Output voltage changes less than 0.05% per °C.

RIPPLE: For maximum ripple at maximum rated output voltage and current, see Figure 1. For typical ripple values at reduced output currents see Figure 3.

AMBIENT OPERATING TEMPERATURE: −20°C to +55°C maximum.

STORAGE TEMPERATURE: −40°C to +85°C maximum.

OUTPUT IMPEDANCE: Specified for each model within the load frequency range shown in the table. Below 1000 cps, impedance is a function of load current and is determined by reference to the load regulation curve. Impedance is the slope of the curve, ΔE/ΔI. Above 10 Hz include the reactive impedance of the effective series inductance as indicated.

INPUT REQUIREMENTS: 115±15V AC, 60 cps±5%. Input current approximately 3 amperes, 280 watts. External fuse required.

Note: % changes in line frequency produce approximately equal % changes in output voltage linearly within stated input frequency tolerances.

SPECIFICATIONS, Performance

CONSTANT VOLTAGE TRANSFORMER: Flux-O-Tran power transformer delivers regulated square wave voltage to rectifiers, improving rectifier and capacitor utilization and reducing output ripple.

OVERLOAD PROTECTION: Special Flux-O-Tran power transformer allows output to be shorted without adverse effect.

SILICON RECTIFIERS: Reliable, efficient, full wave rectification.

CAPACITIVE FILTER: No series choke, capacitive filtering provides excellent ripple reduction and minimizes transients.

CONVECTION COOLING: Heat removal is by natural convection.

NO VOLTAGE OVERSHOOT: No output voltage overshoot from turn on, turn off or power failure.

ISOLATION VOLTAGE: A maximum of 600 volts can be connected between the chassis and either output terminal.

PARALLEL OPERATION: Supplies of the same output voltage can be paralleled for increased current.

SERIES OPERATION: Supplies can be series connected for increased voltage.

Data subject to change without notice.

PATENT NOTICE: Applicable Patent Nos. will be supplied on request.
SPECIFICATIONS, Physical

TERMINALS AND CONTROLS: On Rear of Chassis: Barrier strip terminals provide for AC input, DC output and ground connections. Output terminals are isolated from ground and either positive or negative output may be grounded.

DIMENSIONS: Uncased: 6⅛"H x 4¾"W x 10¾"D. Cased Dimensions: 6⅛"H x 5"W x 10¾"D.

STANDARD FINISH: Chassis: cadmium plated, chrom wash. Case: blue anodized aluminum (special finishes to order).

ACCESSORIES: Cased Unit: To specify cased unit, add suffix "C" to the model no. eg: (PRM 24-8C for module with case). Case includes wraparound, 1 end plate and 4 feet for bench use (feet are removable).

RACK ADAPTER: Model RA 8-2: (6⅛" high x 19" wide) accommodates 2 PRM modules.
Model RA 9-3: (7" high x 19" wide) accommodates 3 PRM modules.
Model RA 10-1: (6⅛" high x 19" wide) accommodates a single PRM module.
Finish: Frosty etch, clear epoxy coating. (special finishes to order).
See Accessory Page 50 for outline dimensional drawings.

CUSTOM OPTIONS: Special models available with custom ratings. Contact your nearest Kepco sales engineer with your special requirements.
SPECIFICATIONS, Voltage Regulation Mode

REGULATION (0.1% Models): LINE: Less than 0.1% output voltage change for 105–125V AC line variation, at any output voltage within the specified range.

LOAD: Less than 0.1% or 3 millivolts output voltage change, whichever is greater for NO LOAD to FULL LOAD change at any output voltage within the specified range.

REGULATION (0.01% Models): LINE: Less than 0.01% output voltage change for 105–125V AC line variation, at any output voltage within the specified range.

LOAD: Less than 0.01% or 2 millivolts output voltage change, whichever is greater for NO LOAD to FULL LOAD change at any output voltage within the specified range.

STABILITY (0.1% Models): Output varies less than 0.1% or 6 millivolts whichever is greater over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

STABILITY (0.01% Models): Output varies less than 0.01% or 2 millivolts whichever is greater over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

RIPPLE: Less than 1 millivolt rms.

RECOVERY TIME: 50 microseconds.

TEMPERATURE COEFFICIENT (0.1% Models): Output voltage change is less than 0.05% per °C.

TEMPERATURE COEFFICIENT (0.01% Models): Output voltage change is less than 0.01% per °C.

AMBIENT OPERATING TEMPERATURE: −20°C to +50°C maximum. Protective circuit turns unit "off" should an over temperature condition occur. Reset with power on-off switch.

STORAGE TEMPERATURE: −40°C to +85°C maximum.

OUTPUT IMPEDANCE: Specified for each model within the load frequency range shown in the table.

Above 10 ke include the reactive impedance of the effective series inductance as indicated.

SPECIFICATIONS, Performance

CONTROLS (0.1% Models): Continuously adjustable single turn voltage control permits output settings from zero to the maximum output voltage. Resolution <0.05% of maximum output voltage.

CONTROLS (0.01% Models): Continuously adjustable 10-turn voltage control permits output settings from zero to the maximum output voltage. Resolution 0.05% of maximum output voltage.

CURRENT LIMIT CONTROL: A single turn control provides adjustable current limiting from 10% to 135% of rated full-load current.

A separate maximum current adjustment is factory set to limit the upper setting of the current limit control to 135% of the rated full load current. Models SC 3672–0.5M and SC 3672–1M include the factory set maximum current adjustment only.

SHORT CIRCUIT PROTECTION: Unique current limiting circuitry permits continuous operation into a short circuit without the aid of fuses, circuit breakers or relays. Output returns instantly to the operating voltage when the overload is removed.

REMOTE PROGRAMMING (0.1% Models): Special terminals provide for resistive voltage or current programming at 1000 ohms per volt.
REMOTE PROGRAMMING (0.01% Models): Special terminals provide for resistive voltage or current programming at 300 ohms per volt.

CONSTANT CURRENT OPERATION (external sensing):
- Current Regulated Output range (0.1% Models): 1 milliampere to 100% of maximum rated current.
- Current Regulated Output range (0.01% Models): 3 milliampere to 100% of maximum rated current.
- Voltage Compliance: 100% of maximum output voltage. (For any selected current value the output voltage is automatically varied from 0 to the maximum output voltage, as required to regulate the output current.)
- Current Regulation (0.1% Models): LINE: Less than 0.1% output current change for 105-125V AC line variation, at any output current within the current regulated range.
- LOAD: Less than 0.2% output current change, for maximum change in load resistance at any output current within the current regulated range.
- Current Regulation (0.01% Models): LINE: Less than 0.01% output current change for 105-125V AC line variation, at any output current within the current regulated range.
- LOAD: Less than 0.2% output current change, for maximum change in load resistance at any output current within the current regulated range.

CURRENT RIPPLE: Less than 0.1% of maximum current ripple.

REMOTE ERROR SENSING: Separate sensing terminals enable specified voltage regulation to be maintained directly at the load by compensating for voltage drops up to 0.5 volts across the load supply leads.

FORCED AIR COOLING: Lateral circulation by blowers ensures efficient heat transfer, permits stacking of units without overheating.

NO VOLTAGE OVERSHOOT: No output voltage overshoot from turn on, turn off or power failure.

ISOLATION VOLTAGE: A maximum of 400 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Physical
- METERS: 0.01% models include voltmeter and ammeter. 0.1% models are available metered or unmetered. The model number in the table includes a voltmeter and ammeter. To specify an unmetered (0.1%) model, delete suffix "M" from the model number. (E.g., SC 3672-1M for unit without meters.)
- TERMINALS AND CONTROLS: On front panel: DC output and ground (5-way) terminals, 10-turn voltage control on 0.01% models, single turn control on 0.1% models (10-turn control available on special order). Power on-off switch, pilot light and fuse. Voltage range switch on Model SC 3672-1M. On rear of chassis: Barrier strip terminations for DC output and ground, remote voltage control, remote error sensing, current regulator connections. Current limit control. Output terminals are isolated from the chassis, either positive or negative terminal may be grounded.
- DIMENSIONS: Standard 1/4 rack dimensions. See table for specification of each model. Depth is measured behind front panel. For half-rack sized units, the depth behind the rack adapter is 19".
- STANDARD FINISH: Gray hammer tone (special finishes to order).
- RACK MOUNTING: Rack mounting adapters (5¼" high x 1½" wide) available for single or dual rack mounting: Model RA 3 for mounting single unit
- Model RA 2 for mounting two units side by side.

131-38 SANFORD AVENUE • FLUSHING, N.Y. 11352 • Phone: (212) IN 1-7000
TWX #212-539-6633 • Cable Address: KEPCOPOWER, NEW YORK

Model SC 3672-0.5M

Model SC 18-4M

Model SC 32-5

Model SC 100-0.2

Rack Adapter for single unit: Model RA3

Rack Adapter for two units: Model RA2
Specifications, General

Regulation:
- **Line:** 0.01% output voltage change for 105–125V AC line variation at any output voltage within the specified range.
- **Load:** 0.05% or 1 millivolt output voltage change, whichever is greater, for NO LOAD to FULL LOAD change at any output voltage within the specified range.

Stability:
Output varies less than 0.05% or 3 millivolts, whichever is greater, over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

Ripple:
Less than 1 millivolt rms.

Models Available:
All of the listed SM Power Supplies available in a 0.01% regulated version on special order. Designate by adding the suffix "X" after the model number: e.g. SM 160-4MX. The "X" version has improved load regulation, rated 0.01% or 1 millivolt, whichever is greater, and improved stability, rated 0.01% or 2 millivolts over 8 hours.

0.01% Line and Load Regulation

<table>
<thead>
<tr>
<th>Model</th>
<th>DC Output Range</th>
<th>DC to 100 CPS</th>
<th>100 CPS to 1 KC</th>
<th>1 KC to 100 KC + uH</th>
<th>H"</th>
<th>W"</th>
<th>D"</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 14-7M</td>
<td>0-14-0-7</td>
<td>0.001</td>
<td>0.005</td>
<td>0.1 +0.4</td>
<td>3%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 14-15M</td>
<td>0-14-0-15</td>
<td>0.0005</td>
<td>0.005</td>
<td>0.02 +0.4</td>
<td>5%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 14-30M</td>
<td>0-14-0-30</td>
<td>0.0003</td>
<td>0.005</td>
<td>0.02 +0.1</td>
<td>8%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 36-5M</td>
<td>0-36-0-5</td>
<td>0.005</td>
<td>0.005</td>
<td>0.03 +0.4</td>
<td>3%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 36-10M</td>
<td>0-36-0-10</td>
<td>0.003</td>
<td>0.005</td>
<td>0.03 +0.4</td>
<td>5%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 36-15M</td>
<td>0-36-0-15</td>
<td>0.002</td>
<td>0.005</td>
<td>0.03 +0.4</td>
<td>8%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 75-2M</td>
<td>0-75-0-2</td>
<td>0.02</td>
<td>0.005</td>
<td>0.04 +0.4</td>
<td>3%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 75-5M</td>
<td>0-75-0-5</td>
<td>0.01</td>
<td>0.005</td>
<td>0.02 +0.4</td>
<td>5%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 75-8M</td>
<td>0-75-0-8</td>
<td>0.005</td>
<td>0.005</td>
<td>0.06 +0.5</td>
<td>8%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 160-1M</td>
<td>0-160-0-1</td>
<td>0.1</td>
<td>0.005</td>
<td>0.04 +0.5</td>
<td>3%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 160-2M</td>
<td>0-160-0-2</td>
<td>0.05</td>
<td>0.005</td>
<td>0.04 +0.4</td>
<td>5%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 160-4M</td>
<td>0-160-0-4</td>
<td>0.02</td>
<td>0.005</td>
<td>0.06 +1.0</td>
<td>8%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 325-0.5M</td>
<td>0-165-0.5</td>
<td>0.4</td>
<td>0.005</td>
<td>0.1 +1.0</td>
<td>3%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 325-1M</td>
<td>0-325-0-1</td>
<td>0.2</td>
<td>0.005</td>
<td>0.1 +1.0</td>
<td>5%</td>
<td>19</td>
<td>13%</td>
</tr>
<tr>
<td>SM 325-2M</td>
<td>0-325-0-2</td>
<td>0.1</td>
<td>0.005</td>
<td>0.1 +1.0</td>
<td>8%</td>
<td>19</td>
<td>13%</td>
</tr>
</tbody>
</table>

Recovery Time:
50 microseconds.

Temperature Coefficient:
Output voltage changes less than 0.05% per °C.

Ambient Operating Temperature:
-30°C to +50°C maximum. Protective circuit turns unit "off" should an over-temperature condition occur. Reset with power on-off switch.

Storage Temperature:
-40°C to +85°C maximum.

Output Impedance:
Specified for each model within the load frequency range shown in the table. Above 10 ke include the reactive impedance of the effective series inductance as indicated.

Data subject to change without notice. Patent Notice: Applicable Patent Nos. will be supplied on request.
INPUT REQUIREMENTS:
105—125V AC 60±1 cps single phase.
Units operate within regulation specification for short term line frequency changes within the range 57—63 cps (except 325V Models).

SPECIFICATIONS, Performance

CONTROLS:
Continuously adjustable 5-turn voltage control permits output settings from zero to the maximum output voltage. Resolution: 0.1% of maximum output voltage.

REMOTE ERROR SENSING:
Separate sensing terminals enable specified voltage regulation to be maintained directly at the load by compensating for voltage drops up to 0.5 volts across the load supply leads.

COOLING:
Lateral circulation by blowers insures efficient heat transfer; permits stacking of units without overheating.

NO VOLTAGE OVERSHOOT:
No output voltage overshoot from turn on, turn off or power failure.

ISOLATION VOLTAGE:
A maximum of 400 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Physical

METERS:
Model numbers in table include 2½" voltmeter and ammeter; 2% full scale accuracy. To specify unmetered unit, delete the suffix "M" from the model number, eg., SM 160-1 for unit without meters.

TERMINALS AND CONTROLS:
On front panel: DC output and ground (5-way) terminals. 5-turn continuously variable voltage control, power on-off switch (dual voltage range switch on SM 325-0.5 M).
On rear of chassis: DC output and ground (5-way) terminals. Remote error sensing terminals. All output terminals are isolated from the chassis, either positive or negative terminal may be grounded. Three wire safety ground line cord.

DIMENSIONS:
Standard EIA rack dimensions. See table for specification of each model. Depth is measured behind front panel.

STANDARD FINISH:
Gray hammertone (special finishes to order)
Specifications, General

Regulation:
The regulation of each model is specified as a percentage or minimum absolute change for 105—125V AC line variations and no load to full load change. Percentage values are measured at maximum rated output voltage.

Stability:
Output varies less than percent regulation specification or 100 millivolts whichever is greater over a period of 8 hours after warmup. Measured at constant line voltage, load and ambient temperature.

Ripple:
See table for maximum specifications applicable to each model.

Recovery Time:
50 microseconds.

Temperature Coefficient:
Output voltage changes less than 0.01% per °C.

Ambient Operating Temperature:
-20°C to +55°C maximum.

Storage Temperature:
-40°C to +85°C maximum.

Output Impedance:
Specified for each model within the load frequency range shown in the table.

Input Requirements:
105—125V AC 50—65 cps single phase. Units are available with 50—440 VAC input tolerance on special order.

Regulation for Bias Outputs:
In the range 0—150V DC, the output voltage variation is less than 0.01% for line fluctuations from 105 to 125 volts. At 150 volts, the output varies less than 3% for load changes from 0—5 milliamperes. At settings below 150 volts, the internal resistance of the bias supply increases to a maximum of 25,000 ohms. The bias output is a negative potential derived from a VR tube energized by a regulated supply; it is referred to the negative output terminal of the main supply. The nominal maximum output voltage can be anywhere in the range 140-160V DC.

Table: Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>DC Output Range</th>
<th>Regulation</th>
<th>Ripple RMS</th>
<th>Output Impedance</th>
<th>Auxiliary Output</th>
<th>Dimensions</th>
<th>Max Input Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vols. MA.</td>
<td>Load %</td>
<td>Bias %</td>
<td>Output %</td>
<td>DC to 100 CPS</td>
<td>100 CPS</td>
<td>AC to 120V</td>
</tr>
<tr>
<td>2400 B</td>
<td>0-150</td>
<td>0-3</td>
<td>0.025</td>
<td>0.035</td>
<td>0.016</td>
<td>0.20</td>
<td>0.015</td>
</tr>
<tr>
<td>#3</td>
<td>0-200</td>
<td>0-3</td>
<td>0.035</td>
<td>0.055</td>
<td>0.020</td>
<td>0.35</td>
<td>0.020</td>
</tr>
<tr>
<td>#1 & #2</td>
<td>0-300</td>
<td>0-3</td>
<td>0.075</td>
<td>0.115</td>
<td>0.050</td>
<td>0.45</td>
<td>0.050</td>
</tr>
<tr>
<td>#1</td>
<td>0-400</td>
<td>0-3</td>
<td>0.105</td>
<td>0.155</td>
<td>0.075</td>
<td>0.75</td>
<td>0.075</td>
</tr>
<tr>
<td>Series</td>
<td>0-500</td>
<td>0-3</td>
<td>0.135</td>
<td>0.205</td>
<td>0.105</td>
<td>1.0</td>
<td>0.105</td>
</tr>
<tr>
<td>400 B</td>
<td>0-150</td>
<td>0-3</td>
<td>0.035</td>
<td>0.055</td>
<td>0.020</td>
<td>0.20</td>
<td>0.020</td>
</tr>
<tr>
<td>#3</td>
<td>0-200</td>
<td>0-3</td>
<td>0.055</td>
<td>0.085</td>
<td>0.035</td>
<td>0.30</td>
<td>0.035</td>
</tr>
<tr>
<td>#1 & #2</td>
<td>0-300</td>
<td>0-3</td>
<td>0.105</td>
<td>0.205</td>
<td>0.105</td>
<td>1.0</td>
<td>0.105</td>
</tr>
<tr>
<td>#1</td>
<td>0-400</td>
<td>0-3</td>
<td>0.135</td>
<td>0.305</td>
<td>0.135</td>
<td>1.5</td>
<td>0.135</td>
</tr>
<tr>
<td>Series</td>
<td>0-500</td>
<td>0-3</td>
<td>0.165</td>
<td>0.505</td>
<td>0.165</td>
<td>5.0</td>
<td>0.165</td>
</tr>
</tbody>
</table>

Diagram

[Diagram of circuit diagram showing bias output and regulation.]
SPECIFICATIONS, Performance

CONTROLS:
Continuously adjustable single-turn voltage control permits output settings from zero to the maximum output voltage. Models 2400B, 430D, 800B and HB 2500 incorporate coarse and fine adjustments. The fine controls cover a range of approximately 1% of rated maximum output voltage. (Fine controls available for all other models on special order.)

Resolution: 0.5% of maximum output voltage. Units with fine controls have a resolution of 0.005% of maximum output voltage.

CONVECTION COOLING:
Heat removal is by natural convection, no blowers.

NO VOLTAGE OVERSHOOT:
No output voltage overshoot from turn-on, turn-off or power failure.

ISOLATION VOLTAGE:
A maximum of 400 volts can be connected between the chassis and either output terminal.

SPECIFICATIONS, Physical

METERS:
Model numbers in table include voltmeter and ammeter, (except Model 103, supplied unmetered only).

TERMINALS AND CONTROLS:
- **On front panel:** DC output and ground (5-way) terminations, 6.3V AC output terminals (where applicable), AC on-off switch, pilot light and fuse. DC on-off switch, pilot light and fuse. Voltage controls. For Model 2400B, output terminals are provided at the rear only.
- **On rear of chassis:** DC output and ground terminations, 6.3V AC output terminals (where applicable). For Model 103, output terminals are provided on the front panel only. All output terminals are isolated from the chassis, either positive or negative output may be grounded.

DIMENSIONS:
Standard EIA rack dimensions. See table for specification of each model. Depth is measured behind front panel.

Models marked with a * are supplied in cabinets. The chassis, when removed from their cabinets will mount directly into a standard 19" wide equipment rack.

<table>
<thead>
<tr>
<th>Model</th>
<th>H</th>
<th>W</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250B</td>
<td>9"</td>
<td>13"</td>
<td>9"</td>
</tr>
<tr>
<td>1520B</td>
<td>12"</td>
<td>19"</td>
<td>17"</td>
</tr>
<tr>
<td>HB 2050</td>
<td>13"</td>
<td>19"</td>
<td>17"</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STANDARD FINISH:
Gray hammertone (special finishes to order).
This glossary is published to assist the engineer in the proper application and understanding of Kepco Regulated Power Supplies. The glossary gives the precise definitions and meaning for every term that is used in describing and specifying Kepco Power Supplies.

GLOSSARY OF POWER SUPPLY TERMS

ACCURACY:
Accuracy, used as a specification for the output voltage of fixed voltage power supplies, refers to the absolute voltage tolerance with respect to the stated nominal output.

AMBIENT OPERATING TEMPERATURE (Range):
The range of environmental temperatures in which a power supply can be safely operated. For units with forced air cooling, the temperature is measured at the air intake.

BRIDGE CURRENT:
The circulating control current in the comparison bridge; bridge current equals the reference voltage divided by the reference resistor. Typical values are 1 mA, 3.3 mA and 10 mA corresponding to control ratios of 1000 ohms/volt, 300 ohms/volt and 100 ohms/volt respectively.

CALIBRATION, PROGRAMMING:
Calibration with reference to power supply programming describes the adjustment of the control bridge current to calibrate the programming ratio in ohms per volt. Many programmable supplies incorporate a “calibrate” control as part of the reference resistor which performs this adjustment.

COMPARISON BRIDGE:
A type of voltage comparison circuit whose configuration and principle of operation resemble a four-arm electrical bridge (Figure 1). The elements are so arranged that, assuming a balance exists in the circuit, a virtual zero error signal is derived. Any tendency for the output voltage to change in relation to the reference voltage creates a corresponding error signal, which, by means of negative feedback, is used to correct the output in the direction toward restoring bridge balance. This comparison bridge is capable of achieving better than 0.01% regulation and stability. (See Error Signal.)

COMPLEMENTARY TRACKING:
A system of interconnection of two regulated supplies in which one (the master) is operated to control the other (the slave). The slave supply voltage is made equal (or proportional) to the master supply voltage and of opposite polarity with respect to a common point.

COMPLIANCE EXTENSION:
A form of master/slave interconnection of two or more current regulated power supplies to increase their compliance voltage range through series connection.

COMPLIANCE VOLTAGE:
The output voltage of a DC power supply operating in constant current mode. The compliance range is the range of voltages needed to sustain a given value of constant current throughout a range of load resistances.

CONSTANT CURRENT POWER SUPPLY (Current Regulator):
A power supply capable of maintaining a preset current through a variable load resistance. This is achieved by automatically varying the load voltage in order to maintain the ratio V_{load}/R_{load} constant.

Figure 1: Comparison Bridge for constant voltage operation.
CONSTANT VOLTAGE POWER SUPPLY
(Voltage Regulator):
A power supply that is capable of maintaining a
preset voltage across a variable load resistance.
This is achieved by automatically varying the output
current in order to maintain the product of load current times load resistance constant.

CONTROL RATIO:
The required change in control resistance to produce
a one volt change in the output voltage. The control ratio is expressed in ohms per volt and is the recipient of the bridge current.

COOLING:
In power supplies, the cooling of regulator elements refers to the method used for removing heat generated in the regulating process. Methods include radiation, convection, and conduction or combinations thereof.

COOLING, CONvection:
A method of heat transfer which uses the natural upward motion of air warmed by the heat dissipators.

COOLING, LATERAL FORCED AIR:
An efficient method of heat transfer by means of side to side circulation which employs blower movement of air through or across the heat dissipators.

CROSSOVER (AUTOMATIC)
VOLTA GE/CURRENT:
The characteristic of a power supply that automatically changes the method of regulation from constant voltage to constant current (or vice versa) as dictated by varying load conditions. (Figure 2).
The constant voltage and constant current levels can be independently adjusted within the specified voltage and current limits of the power supply.
The intersection of constant voltage and constant current lines is called the crossover point (V, I) and may be located anywhere within the volt-ampere range of the power supply.

CURRENT LIMITING (Automatic):
An overload protection mechanism which limits the maximum output current to a preset value, and automatically restores the output when the overload is removed (See Short Circuit Protection, Figure 3).

CURRENT SENSING RESISTOR:
A resistor placed in series with the load to develop a voltage proportional to load current. A current regulated DC power supply regulates the current in the load by regulating the voltage across the sensing resistor.

"DELTA", MINIMUM
A qualifier, often appended to a percentage specification to describe that specification when the parameter in question is a variable, and particularly when that variable may approach zero. The qualifier is often known as the "minimum delta V", or "minimum delta I" as the case may be.

DRIFT:
See Stability

ERROR SIGNAL:
The error signal is the difference between the output voltage and a fixed reference voltage compared in ratio by the two resistors at the null junction of the comparison bridge
\[e = E_o - E_a \left(\frac{R_{VC}}{R_o} \right) \], see Figure 1.
The error signal is amplified to drive the series pass elements and correct the output.

HYBRID:
A combination of disparate elements to form a common circuit. In power supplies, the combination of vacuum tubes and transistors in the regulating circuitry.
LINEARITY, PROGRAMMING:
The linearity of a programming function refers to the correspondence between incremental changes in the input signal (resistance, voltage or current) and the consequent incremental changes in power supply output. Direct programming functions are inherently linear for the Kepco Bridge regulator, and are accurate to within a percentage equal to the supply’s regulating ability.

LINE REGULATION:
The maximum steady state amount that the output voltage or current will change as the result of a specified change in line voltage (usually for a step change between 105-120 or 210-250 volts, unless otherwise specified. Regulation is given either as a percentage of the output voltage or current, and/or as an absolute change, \(\Delta V \) or \(\Delta I \).

LOAD REGULATION:
The maximum steady state amount that the output voltage or current will change as the result of a specified change in output load, generally from no-load to full-load unless otherwise specified. Regulation is given either as a percentage of the output voltage or current and/or as an absolute change, \(\Delta V \) or \(\Delta I \).

MASTER-SLAVE OPERATION:
A system of interconnection of two regulated power supplies in which one, (the master), operates to control the other, (the slave). Specialized forms of the master-slave configuration are used for: Complementary Tracking (plus and minus tracking around a common point); Parallel Operation, to obtain increased current output for voltage regulation; Compliance Extension, to obtain increased voltage output for current regulation.

MODULAR:
The term “modular” is used to describe a type of power supply designed to be built into other equipment, either chassis or rack mount. It is usually distinguished from laboratory bench equipment by a large choice of mounting configurations and by a lack of meters and controls.

NULL JUNCTION:
That point on the Kepco bridge at which the reference resistor, the voltage control resistance and one side of the comparison amplifier coincide. The null junction is maintained at almost zero potential and is a “virtual ground”.

OUTPUT IMPEDANCE:
The effective dynamic output impedance of a power supply is derived from the ratio of the measured peak-to-peak change in output voltage to a measured peak-to-peak change in alternating load current. Output impedance is usually specified throughout the frequency range DC–100 Hz.

OVERSHOOT:
A transient rise beyond regulated output limits, occurring when the AC power input is turned on or off, and for line or load step changes. (See Figures 4, 6a, 6b).

OVER-TEMPERATURE PROTECTION:
A thermal relay circuit which turns off the power automatically should an over-temperature condition occur.

PARALLEL OPERATION:
Voltage regulators, connected together so that their individual output currents are added and flow in a common load. Several methods for parallel connection are used: spoiler resistors, master/slave connection, and automatic crossover. Current regulators can be paralleled without special precaution. (See Application Notes, Pages 8-15.)

PASS ELEMENT:
A controlled variable resistance device, either a vacuum tube or power transistor, in series with the source of DC power. The pass element is driven by the amplified error signal to increase its resistance when the output needs to be lowered or to decrease its resistance when the output must be raised. (See Series Regulator.)

POWER SUPPLY (AC TO DC):
Generally, a device consisting of transformer, rectifier and filter for converting available AC to a prescribed DC voltage or current.
PROGRAMMING:
The control of any power supply functions, such as output voltage or current, by means of an external or remotely located variable control element. Control elements may be variable resistances, conductances, or variable voltage or current sources. (Figure 5.)

PROGRAMMING SPEED:
Programming Speed describes the time required to change the output voltage of a power supply from one value to another. The output voltage must change across the load and because the supply's filter capacitor forms an RC network with the load and internal source resistance, programming speed can only be described as a function of load. (See Application Notes, Pages 8 to 15.) Programming speed is the same as the "recovery time" specification for current regulated operation; it is not related to the recovery time specification for voltage regulated operation.

RECOVERY TIME (Current Regulation):
Specifies the time needed for the output current to return to a value within the regulation specification after a step load or line change. For load change, current will recover at a rate governed by the rate-of-change of the compliance voltage across the load. This is governed by the RC time constant of the output filter capacitance, internal source resistance and load resistance. See Programming Speed in the Application Notes. (Pages 8 to 15.)

RECOVERY TIME (Voltage Regulation):
Specifies the time needed for the output voltage to return to a value within the regulation specification after a step load or line change. Recovery time, rather than response time, is the more meaningful and therefore preferred way of specifying power supply performance, since it relates to the regulation specification. (Figures 6a and 6b.)

REGULATED POWER SUPPLY:
A power supply which maintains a constant output voltage (or current) for changes in the line voltage, output load, ambient temperature or time.

REGULATION:
The maximum amount that the output will change as a result of the specified change in line voltage, output load, temperature or time. Line regulation, load regulation, stability, and temperature coefficient are defined and usually specified.

REMOTE ERROR SENSING:
A means by which the regulator circuit senses the voltage directly at the load. This connection is used to compensate for voltage drops in the connecting wires.

RESPONSE TIME (Time Constant):
 Specifies the time required for the voltage or current excursion to be reduced to 37% of its peak value after a step load or line change.

RESOLUTION:
The minimum voltage (or current) increment within which the power supply's output can be set using the panel controls. For continuous controls, the minimum increment is taken to be the voltage (or current) change caused by 1 degree of shaft rotation.
RIPPLE:
Stated either in peak-to-peak or in rms value, "ripple" specifies the maximum AC component that appears in a DC output. Unless specified separately, ripple includes unclassified noise.

SERIES OPERATION:
The output of two or more power supplies connected together to obtain a total output voltage equal to the sum of their individual voltages. Load current is equal and common through each supply. The extent of series connection is limited by the maximum specified potential rating between any output terminal and ground. For series connection of current regulators, master/slave (compliance extension) or automatic crossover is used.

SERIES REGULATOR:
A device placed in series with a source of power that is capable of controlling the voltage or current output by automatically varying its series resistance. (See Pass Element.)

SHORT CIRCUIT PROTECTION (Automatic):
Any automatic current limiting system which enables a power supply to continue operating at a limited current, and without damage, into any output overload including short circuits. The output voltage must be restored to normal when the overload is removed, as distinguished from a fuse or circuit-breaker system which opens at overload and must be closed to restore power. (See Current Limiting, Figure 3.)

SHUNT REGULATOR:
A device placed across the output, which controls the current through a series dropping resistance to maintain a constant voltage or current output.

SLAVED TRACKING:
A system of interconnection of two or more regulated supplies in which one (the master) operates to control the others (the slaves). The output voltages of the slave units may be equal or proportional to the output voltage of the master unit. (The slaved output voltages track the master output voltage in a constant ratio.) (See Complementary Tracking and Master/Slave.)

SPOILER RESISTORS:
Resistors used to "spoil" the load regulation of feedback regulated power supplies to permit parallel operation when not otherwise provided for.

STABILITY, LONG TERM (LTS):
The change in output voltage or current as a function of time, at constant line voltage, load and ambient temperature (sometimes referred to as drift).

STEP LINE VOLTAGE CHANGE:
An instantaneous change in line voltage (e.g., 105-125V AC); for measuring line regulation and recovery time.

STEP LOAD CHANGE:
An instantaneous change in load current (e.g., 0 to full load); for measuring the load regulation and recovery time.

TEMPERATURE COEFFICIENT (TC):
The % change in the output voltage or current as a result of a 1°C change in the ambient operating temperature (% per °C).

STORAGE, TEMPERATURE:
The range of environmental temperatures in which a power supply can be safely stored (e.g., -40°C to +85°C).

TEMPERATURE, OPERATING:
The range of environmental temperatures in which a power supply can be safely operated (e.g., -20°C to +50°C). See Ambient Operating Temperature (Range).

VIX, INDICATORS:
Voltage/Current Crossover Indicators. VIX indicators are a pair of small mode lamps on the front panel of automatic crossover power supplies. One lamp lights during voltage regulated operation of the power supply; the other lamp lights during current regulated operation.

VIX SIGNAL:
A keyed voltage, whose polarity is an indication of power supply output voltage/current regulation mode. The polarity abruptly reverses at the crossover point and can be used to actuate external mechanisms such as lamps, alarms, etc.

VOLTAGE CORRECTOR:
An active source of regulated power placed in series with an unregulated supply to sense changes in the output voltage (or current); and to correct for these changes by automatically varying its own output in the opposite direction, thereby maintaining the total output voltage (or current) constant.

VOLTAGE REFERENCE:
A separate, highly regulated voltage source used as a standard to which the output of the power supply is continually referred.

WARM-UP TIME:
The time (after power turn-on) required for the output voltage, or current to reach an equilibrium value within the stability specification.
ACCESSORY EQUIPMENT

VIX RELAY

Model VIX-IC translates the VIX REMOTE SIGNAL available on all CK and KS VIX-equipped power supplies into a heavy duty relay closure for external control or signal applications.

MOTORIZED PROGRAMMER
MODEL MP-1-3000

Model MP-1-3000 is a mechanically driven resistance programmer suitable for use with any Kepco programmable power supply or resistance driven mechanism. It consists of a synchronous motor which drives a precision 10-turn servo-mount potentiometer through a multi-speed reversible gear box.

SPECIFICATIONS

OUTPUT RANGE: The output is a variable resistance which can be selected from among the following standard values:
- 10 ohms, 25 ohms, 50 ohms, 100 ohms, 200 ohms, 500 ohms, 1000 ohms, 2000 ohms, 5000 ohms, 10K, 20K, 50K, 75K, 100K and 125K.
- The selected resistance represents the full range resistance of available potentiometers. Designate when ordering by appending the resistance value to the model number, for example: for a 10,000 ohm potentiometer, order MP-1-3000-10K. Other resistance values available on special order.

SPEEDS: 8 speeds from 300 seconds per revolution (3000 seconds for the full 10 turns) to 0.1 seconds per revolution (1 second full range), switch selected from the front panel.

SPECIFICATIONS

INPUT: ±6V DC at 1 ma (from VIX signal).

OUTPUT: Three pole, double throw relay contacts; each rated to carry 10 amperes at 115V AC or 5 amperes at 230V AC.

POWER REQUIREMENTS: 105-125V or 210-250V AC

SIZE: 4½" H x 8¾" W x 5" D (6½" D overall) Standard half-rack configuration.

MOUNTING: In the half-rack enclosure VIX-IC can be mounted in either RA-4 or RA-5 rack adapters. The enclosure is removable so that the circuit board, which is complete by itself, can be mounted within other equipment or chassis. To designate model without enclosure, delete the suffix “C”, e.g., Model VIX-1, for unenclosed circuit board for “built-in” mounting.

300 sec/rev, 100 sec/rev, 30 sec/rev, 10 sec/rev, 3 sec/rev, 1 sec/rev, 3 sec/rev and 1 sec/rev. Other speeds available on special order.

TIMING: Programming speeds referenced to 60 cps line frequency. Overall timing accuracy better than ±5% at 60 cps line frequency.

LIMITS: Mechanically adjustable high and low limit switch automatically reverse the direction of rotation of the potentiometer shaft when it reaches the respective limit points. The limits can be set to restrict shaft travel from 10 revolutions to as little as ¼ revolution, in any portion of the 10-turn sweep range.

OVERRIDE: Manual override buttons permit the operator to reverse the program direction at any desired point, or to stop the mechanism at will.

DIRECTIONAL LAMPS: Two pilot lights are employed to signal the direction of potentiometer rotation.

STOP: The mechanical programmer can be stopped—either electrically or manually at any point in its sweep range. While stopped, the program shaft can be manually rotated.

PROGRAMMING: When used to program the voltage or current function of any Kepco supply, the potentiometer resistance should be selected by multiplying the desired maximum output voltage by the control ratio of the supply in question. For example: to program up to 40 volts from a Kepco Model ABC 40-0.5M, a 40K potentiometer is required (40V x 1000 ohms per volt); choose 50K, the closest standard value.

Potentiometers are easily interchanged to control a variety of power supplies and functions.

INPUT REQUIREMENTS: 105-125V AC, 60 cps.

SIZE: 4½" H x 8¾" W x 9" D (9¾" overall); standard half-rack configuration; fits Rack Adapters RA-4 or RA-5.
The Model 64 Isolation Enclosure provides up to 10,000 volts DC isolation for the chassis of any half-rack sized power supply or instrument. Specially designed to accommodate Kepco CK and ABC power supplies, Model 64 permits such units or equivalent sized packages to be floated up to 10,000 volts above (or below) ground potential.

Programmer Function Generator, Model FG-100

Model FG-100 is a precision, slow speed, triangular waveform generator capable of generating any repetitive ramp function. Separately adjustable, high and low limits, are provided which periodically reverse the direction of the integration. The rising rate and falling rate are separately adjustable or can be controlled symmetrically with a single control.

Specifications

Outputs:

#1 — 0-20V DC, 0-20 mA.

#2 — 0-10 mA to program 100 ohm/volt power supply.

#3 — 0-1 mA to program 1000 ohm/volt power supply.

All outputs available simultaneously.

Input: 105-125V or 210-250V AC, 50-440 cps.

Timing: 4 ranges: 0.1V/sec., 1.0V/sec., 10V/sec., 100V/sec.

Rising and falling slopes continuously adjustable between ranges either separately or symmetrically. For outputs

#2 and #3, divide the above timing by 2000 and 20,000 respectively to obtain milliamperes per second.

Limits: Separately adjustable high limit and low limit permits operation between any two pre-set voltages or currents.

Reversing Switches: Programming direction is automatically reversed at the high and low limits. In addition, a pair of push buttons are provided which permit the direction to be reversed at any point in the operating span. A pair of directional lamps are provided to show the direction of the ramp.

Meter: 2½" edgewise meter monitors output in volts (0-20V DC) and in percent of maximum output, 0-100%.

Programming: Model FG-100 may be used by itself to generate a wide variety of very low speed triangular or sawtooth functions, or it can be used directly with any programmable DC power supply. When connected to a programmable power supply, the Model FG-100 Function Generator programs the power supply throughout all or part of its rated voltage or current range as set by the power supply's controls and the function generator's limit settings. NOTE: function speed is converted to programming speed by multiplying the driving current rate (mA/sec.) by the resistance setting of the voltage control of the power supply being programmed. This gives the programming speed of the power supply's output in volts per second.

Remote Controls: Timing and limit setting controls are brought to a multi-terminal barrier strip at the rear of the unit for remote operation. A sync output is also provided as is provision for remote directional signals.

Size: 4½" H x 8½" W x 13" D (13¾" D overall) standard half-rack configuration, fits Rack Adapters RA-4 and RA-5.
PROGRAMMING PANELS

To take advantage of the PROGRAMMING FEATURE found in many Kepco Power Supplies, two digital programming panels are available to convert such Power Supplies into highly stable, digitally programmed Voltage or Current sources.

MODEL KP-1 for use with Kepco ABC, CK, PAX and SC Groups of Regulated Power Supplies. (1 milliampere Kepco Bridge Circuit.)

SPECIFICATIONS:
MODEL KP-1
DECADeS: 6-digit voltage programming, 3-digit current programming.
RANGE: 0-1,011,110 ohms in 1 ohm steps (0 to 1,011,110V in 1 millivolt steps at 1000V/V).
ACCUlRACY: Decades contain 0.1% resistor except units decade (millivolts) which contain 1% resistors.
SIZE: Half-rack, 4½”H x 8½”W x 9¼”D. Fits Rack Adapters RA-4 or RA-5.

OVER-VOLTAGE
OVER-CURRENT

PROTECTORS

MODEL VIP-1
OVER-VOLTAGE/OVER-CURRENT

MODEL VIP-3
OVER and UNDER-VOLTAGE/OVER and UNDER-CURRENT

DESCRIPTION:
The VIP consists of a sensing circuit capable of detecting a voltage 1% or 0.1 volts different than any preset voltage limit in the range 0-200 volts. Should such an over or under-voltage occur, a fast-acting silicon controlled rectifier (SCR) “crowbar” short circuits the power supply’s output within 50 microseconds. Simultaneously a power interlock relay is tripped which removes the primary AC power within approximately 50 milliseconds. The SCR discharges the power supply’s output filter capacitor and the voltage is reduced to zero.

DATA SUBJECT TO CHANGE WITHOUT NOTICE.
PATENT NOTICE: Applicable Patent Nos. will be supplied on request.

OVER-VOLTAGE
OVER-CURRENT

PROTECTORS

MODEL KP-10 for use with Kepco HB and KS Groups of Power Supplies. (10 milliampere Kepco Bridge Circuit.)

SPECIFICATIONS:
MODEL KP-10
DECADeS: 6-digit voltage programming, 3-digit current programming.
RANGE: 0-10,111.0 ohms in 0.1 ohm steps (0-1011.10V in 1 millivolt steps at 1000V/V).
ACCUlRACY: All decades contain 0.1% resistors.
SIZE: 3½”H x 16”W x 11”D. Standard rack mount configurations.

Operation in the internal reference mode allows the operator to pre-set any voltage as a limit above or below which crowbar/turn-off action is precipitated. In its tracking mode, the VIP is interconnected with the voltage control circuit of the power supply with which it is used and will sense a voltage differential between the output of the supply and the programmed voltage. Terminals are provided for the addition of a sensing resistor to convert VIP into an over-current or under-current protector depending on model. The current sensing resistor is chosen to drop 1 volt at the operating current. The sensitivity control then adjusts the firing threshold from 0 to the operating current, maximum 30 amperes.

SPECIFICATIONS:
VOLTAGE
SENSITIVITY: Minimum threshold 1% of operating voltage or 0.1 volts whichever is greater (adjustable).
RANGE: 0-50V, 50-100V, 100-150V, 150-200V.
*Minimum voltage required for proper operation is 5V.
CURRENT
SENSITIVITY: 1% of operating current producing a 1 volt drop across external sensing resistor.
RANGE: 0-30 amperes.

POWER INTERLOCK RELAY
CONTACT RATING: 10 amperes at 115V AC.

DIMENSIONS:
3¼” high x 10” wide x 8” deep.
Standard EIA rack dimensions.

STANDARD FINISH:
Grey Hammertone (special finishes to order).

Note: Because PNP transistors are used as the series pass elements in Kepco All-Transistor Power Supplies, their reference polarity is reversed relative to Hybrid Models which employ a vacuum tube for this function. When a VIP is to be used in its “Tracking Mode” be sure to specify (when ordering) whether it is to be used with an All-Transistor or a Hybrid Power Supply.
ACCESSORY EQUIPMENT FOR KEPCO MODULAR SUPPLIES

RACK ADAPTER: RA11-6

DIMENSIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>ACCOMMODATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA 11-6</td>
<td>5 7/8"</td>
<td>19"</td>
<td>18⅛"</td>
<td>1⅝"</td>
<td>2 1/4"</td>
<td>6 PAX-C Modules</td>
</tr>
<tr>
<td>RA 12-1</td>
<td>3 ⅜"</td>
<td>19"</td>
<td>18¾"</td>
<td>⅝"</td>
<td>3"</td>
<td>1 PAX-C Module</td>
</tr>
<tr>
<td>RA 13-4</td>
<td>3 ⅜"</td>
<td>19"</td>
<td>18¾"</td>
<td>⅝"</td>
<td>3"</td>
<td>4 PAX-C Modules</td>
</tr>
</tbody>
</table>

MOUNTING HOLES ARE PRE-DRILLED TO ACCOMMODATE CASED MODULES AS LISTED

MODEL A B C D E ACCOMMODATES

RA 8-2	5 7/8"	19"	18¾"	1⅝"	2⅝"	2 PRM-C Modules
RA 9-3	6 ⅝"	19"	18¾"	⅝"	4"	3 PRM-C Modules
RA 10-1	5 ⅜"	19"	18¾"	1⅝"	2⅝"	1 PRM-C Module

RACK CABINET: RA 6-6

BACK PLATE: RA 6-6BP

6 POSSIBLE HOLE-PLUG CODES

<table>
<thead>
<tr>
<th>CODE</th>
<th>CODE</th>
<th>CODE</th>
<th>CODE</th>
<th>CODE</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
</tr>
</tbody>
</table>

4 SOCKETS PROVIDED WITH 2 PINS AND 2 HOLE-PLUGS WHICH CAN BE INTERCHANGED TO CODE THE MOUNTING POSITIONS.

SUGGESTED MOUNTING POSITIONS

CHASSIS MOUNTING, CASED

CHASSIS MOUNTING, UNEASED
AUTOTRANSFORMERS
Compact step-down Transformers provide 115V AC output from 220/230/240V AC (tap selected) 48—440 cps.

Model AT-500

RACK ADAPTERS
Five Rack Adapters are manufactured by Kepco to adapt bench style and half-rack Power Supplies to the standard 19" wide equipment rack or cabinet. Dual Rack Adapters (even numbers) are particularly useful since they allow the equivalent of a dual output Power Supply to be assembled from any two half-rack units.

Model AT-100 100 VA 5½" 2½" 3 ½"
Model AT-250 250 VA 6" 3½" 3 ½"
Model AT-500 500 VA 7½" 3½" 4½"
Model AT-1000 1000 VA 8" 5½" 5½"
Model AT-1500 1500 VA 9½" 5½" 6½"

Overall case dimensions (not including handle and feet)

RACK ADAPTERS
Five Rack Adapters are manufactured by Kepco to adapt bench style and half-rack Power Supplies to the standard 19" wide equipment rack or cabinet. Dual Rack Adapters (even numbers) are particularly useful since they allow the equivalent of a dual output Power Supply to be assembled from any two half-rack units.

Model AT-500 500 VA 7½" 3½" 4½"
Model AT-1000 1000 VA 8" 5½" 5½"
Model AT-1500 1500 VA 9½" 5½" 6½"

Overall case dimensions (not including handle and feet)
SALES REPRESENTATIVES

KEPCO, INC.
13138 SANFORD AVENUE, FLUSHING, N.Y. 11352

Phone: (212) 1-7000 - TWX -212 536-0263
Cable: KEPCOPower New York

1 N. Y. METROPOLITAN AREA
and Northern New Jersey
EASTERN INSTRUMENTATION, INC.
350 Northern Blvd., Great Neck, N.Y. 11021
N.Y. Phone: (516) 456-9605

2 TRUMBULL, CONNECTICUT
RAY PERRON & COMPANY, INC.
36 Louis Street, Trumbull, Conn. 06611
(203) 8-9-431

3 FARMINGTON, CONNECTICUT
RAY PERRON & COMPANY, INC.
10 Briarwood Road, Farmington, Conn. 06032
(203) 9-6-7205

4 BOSTON, MASSACHUSETTS
RAY PERRON & COMPANY, INC.
1870 Centre Street, Boston, Mass. 02132
(617) FA 3-1000 - TWX #617-325-4627

5 MANCHESTER, NEW HAMPSHIRE
RAY PERRON & COMPANY, INC.
19 Canv Road-Bedford, RFD #2
Manchester, N.H. 03102
(603) 472-4911 - TWX #603-472-9960

6 UTTICA, NEW YORK
NACO ELECTRONICS CORP.
2631 Edgewood Road, Utica, N.Y. 13501
(315) 7-7-8081

7 SYRACUSE, NEW YORK
NACO ELECTRONICS CORP.
119 Autumn Avenue, Liverpool, N.Y. 13088
(315) 6-4-7841 - TWX #315-477-1890

8 BINGHAMTON, NEW YORK
NACO ELECTRONICS CORP.
4677 Vestal Pkwy., East, Binghamton, N.Y. 13903
(607) 7-7-6641

9 ROCHESTER, NEW YORK
NACO ELECTRONICS CORP.
74 Park Avenue, Rochester, N.Y. 14650
(716) GR 3-4169

10 PHILADELPHIA, PENNA.
EASTERN INSTRUMENTATION INC.
631 Chesterton Avenue, Philadelphia, Pa. 19126
(215) WA 7-6529

11 WASHINGTON, D. C.
LEE ASSOCIATES, INC.
12500 Wilkins Avenue, Rockville, Md. 20852
(301) 949-4800 - TWX #301-949-6786

12 WINSTON-SALEM, N. C.
LEE ASSOCIATES, INC.
P.O. Box 908, Winston Salem, N.C. 27101
(336) 724-2904

13 ORLANDO, FLORIDA
LEE ASSOCIATES, INC.
P.O. Box 7899, Orlando, Fla. 32804
(305) 241-4449 - TWX #405-253-1732

14 CINCINNATI, OHIO
THE SATULIO COMPANY
618 Cincinnati-Bakery Pike, Cincinnati, Ohio 45244
(513) 723-6663

15 CLEVELAND, OHIO
THE SATULIO COMPANY
1805 Euclid Avenue, Cleveland, Ohio 44112
(216) 6-2600

16 DETROIT, MICHIGAN
THE SATULIO COMPANY
4512 N. Woodward Ave., Royal Oak, Mich. 48072
(313) 8-9-3101

17 CHICAGO, ILLINOIS
LANG, CLAESSON & ASSOCIATES
673 North St. Charles Avenue, Chicago, III. 60611
(312) F-4-3610 - TWX #312-265-1433

18 ST. LOUIS, MISSOURI
NORMAN W. KATRINUS & COMPANY
2427 Brandywine Blvd., St. Louis, Mo. 63144
(314) WD 2-5-627

19 MINNEAPOLIS, MINNESOTA
E. C. ELECTRONIC SALES
16138 Abbott Ave., St. Paul, Minnesota, Minn. 55431
(612) 888-0102 - TWX #612-392-4139

20 KANSAS CITY, KANSAS
NORMAN W. KATRINUS & COMPANY
4506 Cambridge Avenue, Kansas City, Kan. 66103
(913) 4-2-4138

21 DALLAS, TEXAS
AIR INSTRUMENTATION COMPANY
P.O. Box 9355, Dallas, Texas 75214
(214) 1A 4-3800

22 HOUSTON, TEXAS
AIRP ENGINEERING COMPANY
P.O. Box 36321, Houston, Texas 77005
(713) GR 6-2260

23 ALBUQUERQUE, NEW MEXICO
V. T. RUPP COMPANY
1437 San Metto Blvd., N.E., Albuquerque, N.M. 87112
(505) 296-0798 - TWX #505-291-8489

24 DENVER, COLORADO
D. E. BOND ASSOCIATES
5679 East Evans, Denver, Colo. 80222
(303) 766-1234

25 SAN DIEGO, CALIFORNIA
V. T. RUPP COMPANY
3446 Fifth Avenue, San Diego, Cal. 92103
(619) 6-4-8635 - TWX #619-741-0716

26 LOS ANGELES, CALIFORNIA
V. T. RUPP COMPANY
307 Parkman Avenue, Los Angeles, Cal. 90026
(213) 76 7-5776 - TWX #213-380-8840

27 SAN FRANCISCO, CALIFORNIA
V. T. RUPP COMPANY
1382 Los Altos Avenue, Los Altos, Cal. 94022
(415) 948-8483 - TWX #415-949-7950

28 SEATTLE, WASHINGTON
HARRY LEVINSON COMPANY
1211 East Denny Way, Seattle, Wash. 98122
(206) EA 3-5-1020 - TWX #206-250-1047

29 IN CANADA

30 TORONTO, CANADA
ATLAS INSTRUMENT CORPORATION
Division of Atlas Electronics Limited
50 Allen Road, Toronto 19, Canada
(416) MD 6-4124 - Telex 02-2319

31 MONTREAL, QUEBEC
ATLAS INSTRUMENT CORPORATION
Division of Atlas Electronics Limited
33210 Verdun Blvd., Montreal, Quebec
(514) HP 6-4905 - Telex 03-2141

32 OTTAWA, ONTARIO
ATLAS INSTRUMENT CORPORATION
Division of Atlas Electronics Limited
3424 Elgin Street, Ottawa, Ontario
(O) 6213 CE 3-9471

33 VANCOUVER, B.C.
ATLAS INSTRUMENT CORPORATION
Division of Atlas Electronics Limited
908 Beach Avenue, Vancouver, B.C.
(604) MU 4-7927

See our complete
Catalog in
LITHO IN U.S.A.
KEPCO APPLICATIONS EQUIPMENT
BROADENS FUNCTIONAL CAPABILITIES OF REGULATED POWER SUPPLIES

PREVIEWED AT WESCON

Kepco is showing a number of new products at Wescan in their booths Nos. 1412 and 1413. These new products include new concepts in regulated power supplies and new applications assistance devices. Manufacturers of electronic devices and systems will find the new modular regulated power supplies unique and interesting. Two new modular design groups, the PAX and PRM, are being shown. The PAX design group power supplies are line and load regulated and fully programmable. Electrically and mechanically very versatile these modules have a wide range of applicability. The PRM design group provides fixed "battery" voltage, line regulated power. More watts per cubic inch, more watts per pound and more watts per dollar are possible in the PRM systems. The PRM design group power supplies and new applications assistance devices. Also to be shown are two experience-proved design groups of power supplies having new capabilities. The SM Design Group is being presented with newly improved characteristics and at new low prices. These 15 different power supplies, ranging from 0-14 volts at 0-7 amperes to 0-325 volts at 0-2 amperes with 0.01% line and 0.05% load regulation, feature the newly patented Flux-O-Tran line regulating transformer and the Kepco Bridge post regulator. The second of the experience proved groups to be shown is the Hybrid HB Design Group of 6 different units. Previously available at 0-325 volts at 0-200 to 0-800 milli-

VIX RELAY – MODEL VIX - 1C

Kepco regulated power supplies which are both voltage and current regulating with automatic cross-over comprising the CK and KS Design Groups are equipped with VIX indicators and with VIX signalling circuits. The VIX capability includes a pair of lamps, one of which lights when the power supply is operating in its voltage regulating mode and other of which lights when the power supply is operating in its current regulating mode. A voltage from the switching circuit which actuates these mode indicating lights is available for external use. The externally available voltage is one which provides an 8 volt signal of one polarity for voltage mode and the opposite polarity for current mode. Audible or visual remote signalling or automatic switching functions carried out at the cross-over point generally require a certain amount of power. For this reason the Model VIX-1C Relay has been made available. This relay includes a transistor amplifier, power supply and three pole double throw relay. When the input is coupled to the VIX terminals of a CK or KS regulated power supply, the output will switch any three wire circuit carrying up to 10 amperes at 115 volts AC or 5 amperes at 230 volts AC. Applications include remote audible or visible signals indicating cross-over in the power supply. Monitoring for changes in circuit conditions as in life

Continued on Page 1—Col. 3

KEPCO PATENT AWARD

Higher output voltage from transistorized regulated power supplies are possible with the Kepco slave pass transistor circuit. The novelty and utility of this circuit has been recognized by the issuance of U.S. Patent No. 3,128,423 on April 7, 1964. Regulated power supplies commonly use power transistors in a series pass circuit to regulate and to control the output voltage or current. In such power supplies designed for full range output control, i.e. for control from full rated output voltage down to zero, the series pass transistor must at times support the maximum voltage of the supply. Full range controlled power supplies providing voltages in excess of available transistor voltage ratings can be built with highly reliable characteristics by utilizing additional series pass transistors in series connection (see the drawing). The voltage being absorbed in the series control circuit is divided among the series transistors. For maximum efficiency and reliability of such a system the division of the voltage drop among the series transistors should be substantially equal and the dividing means should draw comparatively little current. The patent covers a reliable and efficient slave transistor circuit and one which is used to advantage in a number of Kepco regulated power supplies.

in this issue...

NEW APPLICATIONS EQUIPMENT Page 1
KEPCO CIRCUIT PATENT Page 1
VOLTAGE LIMITING CIRCUIT Page 2
ELECTRON MICROSCOPE Page 3
NEW KEPCO CATALOG RELEASED Page 4

Continued on Page 2—Col. 3
A new circuit has been developed which is simple to apply to Kepco Bridge controlled power supplies to limit the maximum programmable voltage in either current or voltage regulating modes. An inexpensive, low power zener diode is all that is required even for high power supplies. Some form of overload (voltage) limiting for power supply operation in the current regulation mode is a desirable feature. Adjustable limiting is, of course, provided in all automatic crossover power supplies where the voltage control setting serves as the upper limit to the voltage compliance. When external sensing is used to generate current regulation, or non-automatic crossover power supplies are set up for current regulation, voltage limiting must be provided by external means.

A current regulator, in the ideal sense, will treat any open circuit as if it were an overload. The terminal voltage will rise toward infinity as the supply tries to maintain its pre-set current through the infinite load resistance. Actually, of course, the "infinite" voltage is limited to the maximum available raw DC that the transformer-rectifiers can generate. This is dependent on line voltage, but is usually about 150% of the supply's regulated output rating (or band switch position in an HB model). When the output voltage reaches this maximum, it is limited, and so the current cannot be maintained through the load. This constitutes the overload condition for a current regulator.

It may be desirable to introduce limiting in such power supplies so that the limiting point would be independent of line voltage or would be at a lower value to protect a load. Such limiting is easily introduced by means of appropriate zener diodes. A zener diode of appropriate voltage breakdown rating would be connected across the power supply's Remote Programming terminals, found at the rear of all such power supplies. When the compliance voltage (output voltage) of the power supply is less than the zener breakdown rating, the diode does not conduct and has no effect upon the power supply's performance. When the voltage tries to exceed the zener rating, the diode will conduct causing the voltage to be limited to the zener rating.

The maximum zener current would equal the rated bridge current of the power supply in question. 1 ma, 3.3 ma or 10 ma are typical values (control ratios of: 1000 ohms/volt, 300 ohms/volt and 100 ohms/volt respectively). This light current permits the use of relatively small inexpensive zeners even though the current rating of the power supply may be dozens of amperes. Since zeners can be obtained in a variety of voltage breakdown ratings, and can be series connected if desired, this method offers a quick and inexpensive way of obtaining fixed voltage limiting. Because the zener "knee" is not likely to be particularly sharp at the light bridge current, it is recommended that the zener be selected for at least 10% excess voltage above the maximum desired compliance.

NEW VOLTAGE LIMITING CIRCUIT
APPLICABLE TO ALL KEPCO BRIDGE CONTROLLED REGULATED POWER SUPPLIES

It should be noted that voltage limiting is not restricted to current regulators, but can be applied in the same way as set forth above to limit the maximum programmable voltage from a voltage regulated power supply.
ELCtRON MICROSCOPE CAPABILITIES ARE EXTENDED WITH KEPCO POWER SUPPLIES

APPLICATION NOTE

Ladd Research Industries of Burlington, Vermont are engaged in the field of electron microscopy. They design and manufacture many unique accessories for electron microscopes which greatly expand the capability and usefulness of the equipment. One of these accessories is illustrated in the picture, a low temperature specimen holder for the electron microscope.

Basicall), this holder allows the examination of a specimen at magnifications of between 10,000 and 100,000 diameters at temperatures which can be very accurately controlled from room ambient to minus 190°C.

The specimen is secured at the tip of the holder. The holder is then inserted in the electron microscope in such a manner that all movement is completely eliminated; this requirement becomes obvious when we realize that a magnification of up to 100,000 diameters is often necessary. Temperature is then lowered by the introduction of liquid nitrogen at the larger end of the holder. (See Photo).

The introduction of this liquid immediately takes the specimen down to a temperature of minus 190°C (−310°F). A constant, well regulated, current from a Kepco Model CK-2-8M regulated power supply is then applied to the heater leads which terminate in a heating coil near the tip of the holder. The temperature of the specimen can now be very accurately controlled from room ambient and −190°C by changing the amount of constant current supplied through the heating coil. The heat produced is actually used to counteract the low temperature produced by the liquid nitrogen in order that temperature control might be possible. The specimen temperature is measured making use of a Leeds & Northrup Temperature Potentiometer which is connected to the thermocouple shown in the photograph.

Temperature regulation, as can be appreciated, is only as good as the source of constant current supplied through the heater. Mr. Ladd required a constant current power supply which was continuously variable and could be adjusted from the front panel. Ladd purchased six (6) Model 6901 prototypes of what Kepco now offers as the Model CK 2-8M. No other power supply manufacturer was able to satisfy Mr. Ladd's requirements with a standard offering at that time.

ANOTHER KEPCO FIRST!

A high temperature specimen holder is also included in the Ladd Line of accessory equipment. This holder likewise uses a Kepco Model CK 2-8M power supply to provide current to a 100 mesh molybdenum 1/16" wide, 1/4" long and .001" in thickness. This grid, supported and heated, supports the specimen being examined in the electron microscope. Temperatures of over 1500°C (2700°F) have been obtained. Here again elimination of thermal drift of the specimen at high magnification requires an extremely stable constant current power supply. The Kepco supply has filled these stringent requirements.

GLOSSARY OF POWER SUPPLY TERMS

POWER SUPPLY TERMS

SHUNT REGULATOR

A device placed across the output which controls the current through a series dropping resistance to maintain a constant voltage or current output.
ampere, several new models have been added. A new pricing structure now makes these power supplies of a greater value than ever before, featuring regulation and stability improvement from 0.1% to 0.01% and the addition of a 10-turn vernier voltage control.

The ABC Design Group of half rack power supplies will be shown completely equipped with 10 turn potentiometer voltage controls for the best regulation and resolution of any power supply in its class and at no increase in price. Application oriented devices to be shown include a number of products to enhance the value of Kepco power supplies as functional components.

The Model 64 Isolation Enclosure has been designed particularly to accommodate Kepco CK and KS VIX equipment. The Model FG-100 Function Generator is a precision, slow speed, triangular waveform generator capable of generating repetitive ramp functions for voltage or current programming of voltage or current programmable regulated power supplies. Great flexibility is provided by separately adjustable, high and low limits, which periodically reverse the direction of the programming signal. The rise and fall rates are separately adjustable or can be controlled symmetrically with a single control.

The Model 64 Isolation Enclosure provides up to 10,000 volts DC isolation for the chassis of any half rack sized power supply or instrument. Specifically designed to accommodate Kepco CK and ABC power supplies.

The VIX Relay Model VIX-1C translates the VIX REMOTE SIGNAL available on all CK and KS VIX equipped power supplies into a heavy duty relay enclosure for external application. With these products and more, Kepco continues in one of its major aims which is to assist its customers with the application of power supplies to meet a wide range of problems. Thus, Kepco not only furnishes more and more applications engineering information but also many of the special devices needed to conveniently carry out these applications.

FLUX-O-TRAN

NEW KEPCO TRADEMARK

Flux-O- Tran has been in use for some time by Kepco as a Trademark on their patented ferro-resonant line regulating transformer. This Trademark has now been registered in the U.S. Patent Office receiving Reg. No. 769,084.

MOTORIZED PROGRAMMER

Continued from Page 2—Col. 1

A table, any desired portion of the potentiometer may be used. The period of a cycle of operation decreases in proportion to the decrease from full potentiometer range imposed by the setting of the stops.

HIGH VOLTAGE ISOLATION ENCLOSURE

High voltage isolation of regulated power is required in a number of applications. The most familiar would be to operate filaments or heaters of micro-wave tubes having grounded anodes. Complete isolation includes the provision of an AC line transformer with high voltage insulation between primary and secondary and insulation physically surrounding the power supply cabinet and controls. Only primary connections such as the primary on-off switch, fuses and pilot lamp may be mounted with only the usual low voltage insulation.

The Model 64 Isolation Enclosure has been designed to meet the need for a device in which standard regulated power supplies can be mounted to provide high voltage insulation and physical isolation. It consists in a rack mounting type of metal panel and dust cover containing high voltage stand-off insulators for supporting practically any "half rack" power supply. A high voltage insulated isolating transformer is mounted inside the enclosure to provide isolation between the AC circuit of the power supply and the AC line. A hinged plexiglass door on the front panel permits access to the power controls. An interlock switch on this door is provided for external use as, for example, to open a relay controlling the high voltage source of the system.

The Model 64 Isolation Enclosure has been designed particularly to accommodate any Kepco ABC or CK regulated power supply. The insulators for mounting the power supplies are adaptable to any of the various cabinet depths of these two series.

NEW KEPCO 52 PAGE CATALOG ANNOUNCED

More than a catalog, the new Kepco Catalog has been written and published to provide maximum usefulness in the selection and application of regulated power supplies. Instructions, definitions of terms and completely detailed specifications present a well rounded source of power supply information for the design engineer, buyer and user in understandable terms.

The specifying catalog includes multiple indexing. There is an index, tabulating all models according to their DESIGN GROUP with a corresponding list of output voltage and current. A second index lists all models according to OUTPUT VOLTAGE and CURRENT. This cross-indexing method has been found to save time and assist in selecting the best supply for a given purpose. All PROGRAMMABLE power supplies are additionally listed together with a summary of their programming characteristics. The specifying body of the catalog takes each design group and covers each model in detail completely delineating all electrical and mechanical characteristics together with all special features.

The ancillary information parts of the catalog include a glossary of power supply terms, general and special application instruction and information, a wire loss nomograph for calculating the voltage drop in load connecting wires, a VIX nomograph for rapid ohms law calculations of the load resistance, current and voltage relationship of automatic crossover over power supplies.

Copies are available free from your local Kepco Engineering Representative or by writing to:

KEPCO, INC.
131-38 SANFORD AVENUE
FLUSHING, NEW YORK 11352

Continued from Page 1—Col. 1