DESCRIPTION

INTRODUCTION: In a rather astonishing series of demonstrations conducted throughout the U.S., AKG recently put inventory samples of its new D-300 Series microphones through an incredible ordeal of abuse. Sample units were intentionally dropped from heights of six feet or more, repeatedly struck against hard surfaces and purposely subjected to some of the most outrageous treatment ever inflicted on microphones. Despite incurring some cosmetic damage, each unit not only "bounced back" in working order but — even more important — each performed with the sound quality and finesse normally associated only with a more delicate studio microphone.

While AKG does not advocate intentional abuse of any microphone, it nonetheless held these demonstrations to dramatize an extremely important point: That, with the development of its D-300 Series, it has succeeded in creating a radically new and vastly superior generation of musicians' and broadcast microphones — the very first instruments of their kind to successfully blend the wide-range response of a studio microphone and the virtually indestructible toughness of a field microphone with one of the most comprehensively effective systems of shock/noise rejection ever devised. Further enhancing these combined factors are the D-300's distinctive styling, comfortable balance and easy-to-service modular construction.

These remarkable design goals were achieved only by breaking away from established industry concepts. After carefully evaluating the real-world needs of touring vocalists, instrumentalists and their sound engineers, AKG developed several unique (and patented) acoustical, electrical and mechanical configurations from the ground up to meet those needs.

As a result, the D-300 Series is a family of microphones that will surely set a new standard of excellence for microphone performance at moderate cost.

PERFORMANCE: The D-320B is the mid-priced model in the D-300 Series, and embodies most of the uniquely sophisticated design principles that went into the creation of the series. A fully professional instrument whose frequency range, transient response and tonal flexibility rival those of studio dynamics, the D-320B offers an astonishingly high level of performance at moderate cost.

With its variable bass-versus-distance contour (marked bass emphasis or "proximity effect" when used close up; progressively diminishing bass response when used farther away) and smooth presence-rise contour (for added crispness and "punch") plus three different degrees of bass-rolloff equalization, the D-320B is an exceptional creative tool — one that offers its users highly flexible personal control over the tonal "shading" of voices or instruments to suit virtually any locale, or any musical mood and style.

It is also noteworthy that the D-320B — unlike competitive microphones — preserves critical signal-to-noise ratios in all of its equalization modes. This is due to its specially designed filter network, which maintains constant midband sensitivity and assures minimum midband impedance variations in all three bass-rolloff settings.

In addition, the D-320B's hypercardioid directional pattern is far more discriminating than that of a standard cardioid and is also unusually uniform with respect to frequency. These characteristics — extremely important in broadcasting and utterly indispensable for sound reinforcement — produce negligible coloration of desired sounds at the sides of the microphone while providing exceptional (and highly predictable) suppression of unwanted acoustic feedback and background noise towards the rear of the microphone.

DESIGN/CONSTRUCTION: What sets the D-320B apart, however, is not merely its outstanding performance. Rather, it is the combination of that performance with its unmatched ruggedness, extremely effective noise-rejection capabilities, fatigue-free handling, comfortable balance and extraordinary ease of field service. The key to all of these factors is readily apparent in the exploded view below and in the detailed "walking-tour" description that follows overleaf.

SPECIAL DESIGN AND CONSTRUCTION TECHNIQUES
The microphone’s unique design and construction begin with an unusually sturdy three-layer windscreen/pop-filter assembly. This assembly consists of a shock-absorbing stainless-steel wire-mesh outer layer, a blast-diffusing fabric middle layer and reticulated polyurethane-foam inner layer (sandwiched together into a removable liner) plus a threaded retaining ring that secures the entire unit to the microphone housing. So effective is this combination in reducing the effects of wind noise, breath pop and similar acoustic interference, that an external windscreen or pop filter is seldom, if ever, required.

As tough as the windscreen/pop filter is alone, it is further reinforced against impact damage by a special safety-basket assembly. Note that the safety basket is contoured to support the inside of the windscreen/pop filter and to surround the front of the transducer system — thus also isolating all internal parts from head-on impact damage. As shown, the safety basket consists of a resilient dome-shaped ribbed cage joined to a reinforced open-frame casting. Fitted with a fine-wire-mesh screen that coincides with side ports in the microphone housing, the casting also has indexing notches that align the entire rugged assembly with structural members in the microphone housing.

Next in line is the highly advanced transducer system. In terms of its superb performance, its unusually thorough shock and noise suppression and its modular field-serviceable packaging, the system is a prime example of the care and the attention to detail that AKG engineers lavished on the D-320B. To start with, the transducer system "floats" uniformly in all directions within the microphone housing for unprecedented isolation from the effects of impact damage, handling noise and spurious vibrations. This is achieved by two special ring-shaped elastomer suspensions — one near the front of the system and the other at the rear of the system. To combine the advantages of both hard and soft suspension designs, each of these ring suspensions has a dense, relatively hard body and a series of compliant, progressively compressible dome-shaped projections around its periphery — in effect forming a complex, highly damped low-pass mechanical filter. Therefore, under normal handling conditions, the compliant domes effectively decouple the transducer system from mechanically and acoustically induced vibration. Further, under extremely abusive conditions (dropping the microphone or subjecting it to lateral impact), the domes increasingly compress, in proportion to applied g-force, in a progressive braking action — ultimately allowing the harder body of each suspension to act as a bumper.

These extraordinary suspensions, however, are only part of AKG's comprehensive scheme of noise suppression. As a further precaution, the transducer incorporates a hum-bucking winding to cancel the effects of electromagnetically induced noise from ever-present power and lighting cables as well as from dimmers, power switchboards and the like. The transducer, computer designed for widest possible frequency range and superb transient response, is encapsulated in a replaceable plug-in module. Injection-molded of stress-resistant thermoplastic, the module is fitted with a special low-noise two-contact female audio connector precisely aligned and keyed to mate with a special two-pin male connector (and the three-position bass-roll-off switch with its filter network) within the microphone housing.

The microphone housing itself is a lightweight, yet impact-resistant zinc-alloy casting — elegantly styled, carefully balanced and finished in glare-free matte nickel. For maximum wear resistance, the finish is electroplated (not merely painted, as on competitive microphones). In conjunction with the windscreen/pop filter and the safety basket, this housing effectively encapsulates all internal parts against metal particles, dust and moisture spray.

Should field service ever become necessary, the windscreen/pop filter can be quickly unscrewed, the safety basket easily lifted out, and the transducer module simply unplugged and withdrawn from the microphone housing for replacement. Spare assemblies and parts are readily available. The D-320B is a low-impedance balanced-output unit fitted with a standard 3-pin male XLR-type connector. The microphone is supplied complete with an SA-31 stand adapter and a foam-lined vinyl protective case. Several optional accessories — listed in the Technical Data section — are available.

TECHNICAL DATA

Transducer Type: Dynamic
Directional Characteristic: Hypercardioid
Frequency Range (bass set norm): 80-18,000 Hz
Nominal Impedance at 1 kHz (bass set norm): 290 ohms
Rated-Impedance Category: 250 ohms
Recommended Load Impedance: >600 ohms

<table>
<thead>
<tr>
<th>Sound Pressure Level for 1% THD:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Hz, 1000 Hz, 5000 Hz: 128 dB</td>
</tr>
</tbody>
</table>

Hum Sensitivity (1 mG field; bass set norm): —142 dBm
Case Material: Nickel-plated die-cast zinc alloy
Dimensions: See Dimensions figure
Schematic: See Schematic figure
Net Weight: 340 g (=12 oz)

Included Accessories:
- SA-31 flex, snap-in stand adapter with 5/8-in.
- 27 thread
- Foam-lined vinyl case

Optional Accessories:
- SA-26 clothespin stand adapter with 5/8-in.
- 27 thread
- PF-10 foam pop filter (red, blue, yellow, off-white, gray)
- GN-7E, GN-20E modular flexible-goose neck kits
- KM-series floor and boom stands, stand accessories
- ST-series table stands
- MCH-series heavy-duty microphone cable assemblies
OUTLINE: The microphone shall be a dynamic pressure-gradient type. As specified in subsequent detail, it shall have an intrinsically wide frequency range accompanied by a variable bass-versus-distance contour, a fixed presence-rise contour, and a highly uniform hypercardioid polar pattern with respect to frequency. As also specified in subsequent detail, it shall incorporate facilities for adjusting its low-frequency response characteristics in three different settings to suit user preferences and/or ambient acoustics, and shall maintain constant midband sensitivity and minimum midband impedance variations in all three of these response settings. As further specified in subsequent detail, it shall employ special modular design and construction techniques for exceptional resistance to impact damage and to noise (whether acoustically, mechanically, motorially, or electromagnetically induced), for protection from foreign particles, for fatigue-free handling balance and comfort under prolonged use, and for extraordinary ease of field service.

PERFORMANCE: The microphone shall have a normal, unequalized frequency range (i.e., frequency range unaltered by user adjustments of its low-frequency response) of 50,16,000 Hz, accompanied by the following on-axis characteristics: (1) a ±17 dB variable bass-versus-distance contour at 100 Hz that shall range from −7 dB response rolloff at a working distance of 1 m (=3-1/4 ft) to +10 dB typical proximity-effect boost at a working distance of 1 cm (=3-1/8 in.); (2) a fixed presence-rise contour from 1500 Hz to 10,000 Hz that shall boost response +5 dB at 100 Hz and 20 dB at 5000 Hz. Under the normal, unequalized conditions previously specified, the microphone shall have a highly uniform hypercardioid directional pattern with respect to frequency as follows: (1) at a sound-incidence angle of 90 degrees, typical off-axis frequency response shall not vary more than 5-6 dB from 125-16,000 Hz; (2) at a sound-incidence angle of 135-180 degrees, minimum front-to-rear discrimination shall exceed 9 dB at 100 Hz and 20 dB at 1000 Hz. An effective hypercardioid pattern shall be maintained over the entire frequency range.

Under the normal, unequalized conditions previously specified, and at 1000 Hz, the microphone shall have an open-circuit sensitivity of 1.4 mV/Pa (−57.1 dBV) and a nominal (true) impedance of 290 ohms. However, in accordance with various industry standards for calculating other sensitivity figures from this open-circuit value, the microphone's rated impedance shall be categorized as follows: (1) for a maximum-power-level input of −63 dBm (i.e., 1 mW/10 dynes/cm²), the rated impedance shall be categorized as 150 ohms. The microphone shall be capable of handling a maximum sound-pressure level of 50 ps (128 dB SPL) at 1000 Hz with distortion not exceeding 1%.

Low-frequency response characteristics shall be adjustable by means of a three-position bass-rolloff switch accessible through a cutout in the microphone housing. The switch shall shift specified 100-Hz values of off-axis bass rolloff/proximity-effect boost, of-axis response, and front-to-rear discrimination in a fixed relationship as follows: (1) the switch position marked with the normal-response symbol shall maintain all normal values as specified; (2) the switch position marked with the medium-rolloff symbol shall adjust all normal values 10 dB downward; (3) the switch position marked with the sharp-rolloff symbol shall adjust all normal values 20 dB downward.

To preserve optimum midband signal-to-noise ratios at all times, the associated equalization network shall exhibit the following characteristics at 1000 Hz in all three bass-rolloff switch settings: (1) constant sensitivity; (2) minimum variations in the 290-ohm value of nominal impedance previously specified. With the bass-rolloff switch set to each of its three positions, 290-ohm impedance shall vary as follows: (1) with bass rolloff set to normal, impedance shall not vary; (2) with bass rolloff set to medium, impedance shall decrease by approximately −3%; (3) with bass rolloff set to sharp, impedance shall decrease by approximately −25%.

DESIGN/CONSTRUCTION: To achieve all of the characteristics outlined or specified up to this point, the microphone shall consist of four special modular assemblies interrelated as follows: (1) a removable shock-absorbing three-layer windscreen/pop filter; (2) a removable safety basket, internally reinforcing the windscreen/pop filter and protecting the front of the transducer system; (3) a specially suspended and hum-compensated plug-in module containing the transducer system; (4) an impact-resistant main housing, mating with the first three assemblies and containing the bass-rolloff switch with its associated network plus the microphone's audio output connector. Specific details of all assemblies shall be as follows:

The three-layer windscreen/pop-filter assembly shall effectively suppress wind noise, breath pop, and similar acoustic interference, and shall also partially isolate the transducer module from the effects of head-on impact damage. The assembly shall consist of a shock-absorbing stainless-steel wire-mesh outer layer, a removable liner made up of a blast-diffusing fabric middle layer sandwiched with an open-cell reticulated polyurethane-foam inner layer, and an internally threaded retaining ring to mate the entire assembly securely with an external thread on the main housing. The internal safety-basket assembly shall be specially contoured to fit supportively just inside the windscreen/pop filter and protectively around it. This assembly shall consist of a shock-absorbing three-layer windscreen/pop filter against, and additionally isolating the transducer module from the effects of head-on impact damage. The safety basket shall consist of a resilient dome-shaped ribbon cage, joined to a reinforced truss-like open-frame casting filled with fine-steel-mesh screen to coincide with side ports in the main housing and having indexing notches to align the entire assembly with structural members in the main housing.

To further isolate the transducer module from the effects of impact damage, as well as to reduce the effects of handling noise and spurious vibrations, the entire module shall float uniformly in all directions within the main housing. The degree of isolation shall be achieved by means of two special ring-shaped elastomer spacers, one fitted around the module near its front end, and the other fitted to the module at its rear end. To combine the advantages of both hard and soft suspension designs in the form of a complex, highly damped low-pass mechanical filter, each of these rings suspensions shall have a density, relatively hard body and a series of compliant, progressively compressible dome-shaped projections around its periphery that shall function as follows: (1) under normal handling conditions, the compliant domes shall effectively decouple the transducer module from mechanically and vibrationally in-
duced handling noise; (2) under extremely abusive conditions (e.g., dropping the microphone or subjecting it to lateral impact), the domes shall increasingly compress, in proportion to applied g-force, in a progressive braking action that shall ultimately allow the harder body of each suspension to act as a bumper.

A moving-coil transducer element shall be positioned at the front end of the transducer module. The transducer element shall be computer-designed for widest possible frequency range and optimum transient response, shall employ a nonmetallic MAKROFOL™ diaphragm, and shall further incorporate a hum-bucking winding to cancel the effects of stray magnetic fields from power and lighting cables, dimmers, and power switchboards. The body of the transducer module shall be injection-molded of stress-resistant thermoplastic, and shall be fitted at its rear end with a two-contact female audio connector precisely aligned and keyed to mate the entire module securely and noiselessly with a two-pin male audio connector within the main housing.

The main housing shall incorporate the following three major elements: (1) an internal two-pin male audio connector precisely aligned to mate securely and noiselessly with the two-contact female audio connector at the rear end of the transducer module; (2) an external three-pin male audio connector designed to mate with Cannon XLR, Neutrik 3FC, Switchcraft A3F, or equivalent connectors; (3) a low-noise SP3T switch with a tapped inductor to provide the adjustable bass-rolloff characteristics previously specified. The switch and inductor shall interrelate with the system within the transducer module as follows: (1) the normal position of the switch shall disconnect the inductor completely; (2) the medium-rolloff (–10 dB) position of the switch shall connect the entire inductor in parallel with the transducer; (3) the sharp-rolloff (–20 dB) position of the switch shall connect a tapped portion of the inductor in parallel with the transducer.

The assembled microphone shall be 185 mm (=7-5/16 in.) long by 53 mm (=2-1/16 in.) in maximum diameter by 20 mm (=13/16 in.) in minimum diameter, and the net weight shall not exceed 340 g (=12 oz). The microphone’s weight distribution and shape shall be such that they promote fatigue-free handling balance and comfort under prolonged use. To facilitate field service, all four constituent assemblies of the microphone shall be quickly and easily separable for replacement or repair.

An AKG model SA-31 swivel stand adapter with standard 5/8-in. –27 thread, and a foam-lined vinyl carrying case shall be provided with the microphone. The microphone herein specified shall be the AKG 0-320B.